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Abstract

This short note (i) shows learning with the thermodynamic variational objective is a form of adaptive
annealed importance sampling, (ii) summarises the result of Grosse et al. (2013) on the lower-bound
estimate of the log-partition function, and (iii) explores alternative interpolating paths for AIS based on
α-divergences.

1 Annealed importance sampling and lower-bound on the log-
partition function

Annealed importance sampling (AIS) provides an estimate of the (log)-partition function of an intractable
target distribution by sampling from a distribution path that interpolates between a tractable initial dis-
tribution and the target (Neal, 2001). In detail, suppose there is a difficult density p(z) = f(z)/Z, where
f(z) is the unnormalised density and Z is the partition function that we wish to estimate, Z =

∫
f(z)dz.

For simplicity, we assume a tractable initial distribution, p0(z) = f0(z)/Z0. AIS first forms a sampling path
of K + 1 intermediate densities, {pk(z)}Kk=0, that slowly anneals from p0(z) to p(z). The k-th intermediate
density can be written as pk(z) = fk(z)/Zk, where fk(z)|k=0 = f0(z) and fk(z)|k=K = fK(z) = f(z). As-
suming that one can sample from an MCMC transition operator Tk(z|zk−1) that leaves pk invariant, AIS
alternates between importance sampling updates and MCMC transitions as in algorithm 1. The estimate of
the partition function is the average of particle weights at the end of the sampling path.

Algorithm 1: Annealed Importance Sampling

for m = 1 to M do

z
(m)
0 ∼ p0(z)

w
(m)
0 = Z0

for k = 1 to K do

w
(m)
k = w

(m)
k fk(z

(m)
k−1)/fk−1(z

(m)
k−1)

z
(m)
k ← sample from Tk(z|z(m)

k−1)

return Z ≈ 1
M

∑
m w

(m)
K

It turns out that we can also obtain an estimate of a lower bound on the log-partition function. We next
summarise the lower bounding result and proof of Grosse et al. (2013) for the log-partition function. For ease

of analysis, we assume perfect transitions, i.e., {z(m)
k }Mm=1 are independent and exact samples from pk(z).
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Consider the log of the final weight for one particle,

logwK = logwK−1 + log fK(zK−1)− log fK−1(zK−1)

= logwK−2 + log fK−1(zK−2)− log fK−2(zK−2) + log fK(zK−1)− log fK−1(zK−1)

...

= logw0 +

K∑
k=1

[log fk(zk−1)− log fk−1(zk−1)]

As w0 = Z0, the expected log-weight is,

F := E[logwK ] = logZ0 +

K∑
k=1

Epk−1(z)

[
log

fk(z)

fk−1(z)

]
(1)

Note that, log fk(z) = log pk(z) + logZk and, similarly, log fk−1(z) = log pk−1(z) + logZk−1, and ZK = Z,
the expected log-weight becomes,

F = logZ0 +

K∑
k=1

Epk−1(z)

[
log

pk(z)

pk−1(z)
+ logZk − logZk−1

]

= logZ −
K∑
k=1

KL[pk−1(z)||pk(z)]. (2)

Therefore, the expected log-weight is an under-estimate of the log-partition. The gap is the sum of KL
divergences between intermediate distributions. This key result of Grosse et al. (2013) does not make any
assumption about the sampling path and thus holds for any paths.

2 A special case: the thermodynamic Variational Objective

Consider a geometric averaging path, fk(z) = f0(z)1−βkf(z)βk , where βk ∈ [0, 1], β0 = 0, and βK = 1. This
leads to,

log fk(z)− log fk−1(z) = (βk − βk−1)(log f(z)− log f0(z)). (3)

If we choose the initial distribution such that p0(z) = f0(z) and Z0 = 1, the expected log-weight in eq. (1)
becomes,

F =

K∑
k=1

(βk − βk−1)Epk−1(z)

[
log

f(z)

p0(z)

]
. (4)

The expected log-weight, or lower bound to the log-partion function above in eq. (4) is exactly the thermody-
namic Variational Objective (Masrani et al., 2019). The gap between the TVO and the log-partition function
was recently shown to be the sum of KL divergences between adjacent distributions in the path (Brekelmans
et al., 2020). As shown earlier, we note that this property is more general and is not specific to the geometric
averaging path. Learning a variational distribution with the TVO objective can thus be viewed as a form
of annealed importance sampling in which (i) we adapt the initial distribution to optimise the lower bound,
and (ii) self-normalised importance sampling, instead of combining MCMC and importance sampling as in
algorithm 1, is used to evaluate the expectations.

3 Exploring alternative sample paths

Choosing an appropriate sequence of interpolating distributions is key to the performance of AIS. Gelman
and Meng (1998) show that in a simple case of annealing between two univariate Gaussian densities, the
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popular geometric averaging path is sub-optimal. However, finding an optimal path is difficult for a gen-
eral target distribution. Grosse et al. (2013) propose using moment averaging path as an alternative to
moment averaging, which results in higher effective sample size and potentially tighter bound estimates for
Restricted Boltzmann Machines. Grosse et al. (2013) also provide variational interpretations for both geo-
metric averaging and moment averaging paths. We build upon these to motivate alternative paths based on
α-divergences.

Grosse et al. (2013) show that choosing an intermediate distribution in the geometric averaging path is
equivalent to minimising a weighted sum of KL divergences to the initial and target distributions,

qGA
β (z) = arg min

q(z)

(1− β)KL[q(z)||p0(z)] + βKL[q(z)||p(z)].

Proof. (Grosse et al., 2013) Consider the Lagrangian of the objective function above:

LGA = λ

(∫
q(z)dz − 1

)
+ (1− β)KL[q(z)||p0(z)] + βKL[q(z)||p(z)].

Setting its the functional derivative wrt q(z) to zero gives log q(z) = C + (1 − β) log q0(z) + β log p(z), or

q(z) ∝ q1−β0 (z)pβ(z). For exponential family densities, this result translates to ηq = (1− β)ηq0 + βηp, where
η denotes the natural parameters.

When the path consists of exponential family densities, reversing the direction of the KL divergences
above gives an objective function for the moment averaging path,

qMA
β (z) = arg min

q(z)

(1− β)KL[p0(z)||q(z)] + βKL[p(z)||q(z)].

Proof. (Grosse et al., 2013) When q(z) is in the exponential family, it can be written as q(z) = exp(ηᵀg(z))/Zη,
where g(z) denotes the sufficient statistics. The variational objective above can be rewritten as,

LMA = C + logZη −
∫

[(1− β)q0(z) + βp(z)]ηᵀg(z)dz.

Note that
d logZη

dη = Eq(z)[g(z)]. Setting the gradient of the above objective and rearranging give,

Eq(z)[g(z)] = (1− β)Eq0(z)[g(z)] + βEp(z)[g(z)].

We can generalise the above variational objectives by considering the α-divergence in place of KL. In
detail, consider the following objective,

LAA = (1− β)Dα[p0(z)||q(z)] + βDα[p(z)||q(z)]. (5)

Minimising this objective wrt q(z) results in the following stationary condition:

Eq(z)[g(z)] = (1− β)Eq′0(z)[g(z)] + βEp′(z)[g(z)], (6)

where q′0(z) = qα0 (z)q1−α(z), (7)

p′(z) = pα(z)q1−α(z). (8)

The derivation for this result uses the proof for the moment averaging path above, and the relationship
between stationary points of α- and KL divergences (Minka, 2005, Theorem 3). When α = 1 or α → 0, we
arrive at moment averaging and geometric averaging, respectively.

We note again that this section is merely an exercise to explore alternative paths and we hypothesize that
the optimal path by no means should be a result of minimising the above objective for a particular α value.
However, we suggest that for a fixed {βk}Kk=0 schedule, by carefully choosing α, there are potentially better
paths than the moment averaging or geometric averaging path.
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4 Some toy examples

We first consider various paths interpolating between N (z;−4, 1) and N (z; 4, 0.2), with the number of den-
sities K + 1 = 25. The paths given by various averaging approaches are shown in fig. 1. We also show the
elements of the sum in the AIS bound in eq. (1), as well as the sum which is the estimate of the log-partition
function. Since both the initial and target densities are normalised, the ground-truth log-partition function
is log(1) = 0. We note that the averaging path corresponding to α = 0.05 is better than the geometric
averaging path by about 3 nats and than the moment averaging path by about 5 nats.

geometric averaging alpha = 0.01 alpha  = 0.05 moment averaging

Figure 1: [Top] Intermediate densities interpolating between N (−4, 1) and N (4, 0.2) for various paths and
[Bottom] corresponding elements of the sum in eq. (1).

We show the difference between the estimates of the log-partition function provided by various paths in
fig. 2. We observe that for a single example, the relative ranking of different paths remains stable. However,
this ranking varies across examples, for instance: α = 0.05 seems to be best when annealing from N (−4, 1)
to N (4, 0.2), but moment averaging (α = 1) seems superior when annealing from N (−4, 0.2) to N (4, 1.0).

Figure 2: The lower-bounds on the log-partition function eq. (1) provided by various paths, with various
numbers of regularly spaced β’s.

5 Summary

We have shown learning using the thermodynamic Variational Objective is a special case of adaptive Annealed
Importance Sampling. The KL gap result recently presented by Brekelmans et al. (2020) is thus also true for
more general sample paths, thanks to the results of Grosse et al. (2013). Some toy examples were provided
to illustrate alternative paths based on α-divergences. Using these sample paths for Restricted Boltzmann
Machines is an interesting future direction.
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