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Abstract

Gaussian processes are powerful nonparametric distributions over continuous functions that
have become a standard tool in modern probabilistic machine learning. However, the
applicability of Gaussian processes in the large-data regime and in hierarchical probabilistic
models is severely limited by analytic and computational intractabilities. It is, therefore,
important to develop practical approximate inference and learning algorithms that can
address these challenges. To this end, this dissertation provides a comprehensive and unifying
perspective of pseudo-point based deterministic approximate Bayesian learning for a wide
variety of Gaussian process models, which connects previously disparate literature, greatly
extends them and allows new state-of-the-art approximations to emerge.

We start by building a posterior approximation framework based on Power-Expectation
Propagation for Gaussian process regression and classification. This framework relies on a
structured approximate Gaussian process posterior based on a small number of pseudo-points,
which is judiciously chosen to summarise the actual data and enable tractable and efficient
inference and hyperparameter learning. Many existing sparse approximations are recovered
as special cases of this framework, and can now be understood as performing approximate
posterior inference using a common approximate posterior. Critically, extensive empirical
evidence suggests that new approximation methods arisen from this unifying perspective
outperform existing approaches in many real-world regression and classification tasks.

We explore the extensions of this framework to Gaussian process state space models,
Gaussian process latent variable models and deep Gaussian processes, which also unify
many recently developed approximation schemes for these models. Several mean-field and
structured approximate posterior families for the hidden variables in these models are studied.
We also discuss several methods for approximate uncertainty propagation in recurrent and
deep architectures based on Gaussian projection, linearisation, and simple Monte Carlo. The
benefit of the unified inference and learning frameworks for these models are illustrated in a
variety of real-world state-space modelling and regression tasks.
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Chapter 1

Introduction

This chapter aims to set the context for the remainder of this thesis. Several concepts central
to this thesis such as Bayesian nonparametrics and Gaussian process regression are briefly
introduced.

1.1 Probabilistic machine learning

Probabilistic modelling is a cornerstone of modern machine learning toolkits. It provides
a principled framework for making coherent inferences, learning from observations and
handling uncertainty, through the language of probability theory. A probabilistic model uses
probability distributions to define the subjective belief or uncertainty of unknown quantities
in the model via the prior, and how they are related to the observed data via the likelihood.
Probabilistic inference, or Bayesian inference, then turns the prior belief into a posterior
probability distribution of the unknown variables (the posterior), representing the belief
about the unknown variables upon observing the data. As an example, probabilistic inference
in a parametric model with a finite-dimensional parameter θ and observed data D allows us
to obtain the posterior p(θ|D) from the prior p(θ) and the likelihood p(D|θ) by using,

p(θ|D) = p(θ)p(D|θ)
p(D) , (1.1)

where p(D) is the marginal likelhood of the model or the model hyperparameters,

p(D) =
∫

p(θ)p(D|θ)dθ. (1.2)

Unlike non-probabilistic schemes which produce a single best parameter estimate, Bayesian
inference gives a probability density over θ, that is, there are many (potentially infinite)
parameter values that are plausible given the observed data, but some are more plausible
than others. This posterior object can then be used as the prior when new data arrive, or to



2 Introduction

predict unseen data D∗,

p(D∗|D) =
∫

p(D∗|θ)p(θ|D)dθ, (1.3)

where we assume D and D∗ are conditionally independent given θ. For more comprehensive
reviews of Bayesian inference and its application to data analysis and machine learning, see
Jaynes (2003); Gelman et al. (2014a); Ghahramani (2013, 2015).

Despite being conceptually and intuitively simple, exact Bayesian inference is often
computationally and analytically intractable. The intractability can come from one or
multiple sources including non-conjugacy, large data set size, and high dimensional parameter
space. There are, however, many approximation schemes that can give asymptotically
exact solutions such as Markov Chain Monte Carlo methods, or approximate solutions such
as Laplace’s method, variational free-energy method, and expectation propagation (e.g.
MacKay, 2003; Neal, 2011; Jordan et al., 1999; Wainwright and Jordan, 2008; Minka, 2001b).
Developing rich, accurate and general approximate Bayesian inference and learning methods
for many probabilistic models is an active research area. Falling under this research theme,
this thesis develops a series of generic deterministic approximation methods based on power
expectation propagation (Minka, 2004) for a variety of Gaussian process probabilistic models.

1.2 Nonparametric models

Defining a suitable and flexible model for the data at hand is key to good performance,
regardless of how the inference process is carried out (probabilistic or non-probabilistic).1 In
the case of Bayesian inference for a model with a finite-dimensional parameter space above,
the flexibility of the model is constrained by the capacity of the parameter. In particular, the
parameter is of a fixed size that is independent of the training set, and it is the bottleneck
between the training the training data and the test data, as shown in eq. (1.3). This is
arguably inflexible as the training size can grow and the fixed size parameter can then become
a limited information channel from the data to the prediction (Ghahramani, 2013).

There are several strategies to expand the model capacity, including i. build a parametric
model, but with a massive number of parameters (e.g. a large neural network with millions of
weights) and ii. explicitly build a nonparametric module in the model, that is a component
with an infinite-dimensional parameter. In this section and what follows, we focus on the
approach of building nonparametric models. One question naturally arises, which is how
we can represent and manipulate such a big parameter on a computer. Fortunately, this
parameter can be mathematically represented as a function and, as a result, inference is now

1There is an issue with overfitting when the model is too flexible, i.e. the model that copies and hence
perfectly explains the training data but does not generalise to test data, but the Bayesian paradigm is
often robust to such behaviour, since the parameter(s) are averaged out. The discussion about overfitting,
underfitting, model averaging and generalisation is, however, beyond the scope of this introduction.
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performed over the function space instead of a finite-dimensional vector space. Additionally,
in non-parametric models, the complexity actually grows with the size of data available and
does not require an infinite amount of computation.

Combining the Bayesian paradigm with nonparametric modelling, which is often called
Bayesian nonparametrics, has been a flourishing research area of machine learning and statis-
tics (Hjort et al., 2010; Orbanz and Teh, 2011; Ghahramani, 2013). Several prime examples
are Gaussian processes, (hierarchical) Dirichlet processes, and Indian Buffet Processes. In
this thesis, we consider Gaussian processes (GPs) as a nonparametric component in building
regression, classification, state space (recurrent), and hierarchical (deep) models. An example
how GPs might be used for regression is shown in fig. 1.1. In this case, the infinite-dimension
object is the non-linear function, mapping from one-dimensional input x to one-dimensional
output y. We show several functions drawn from the GP prior and several functions drawn
from the GP posterior upon observing three datapoints. Note that there are infinitely many
functions that are consistent with the observed data.
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Fig. 1.1 Left: functions drawn from a GP prior with a zero mean function and an exponen-
tiated quadratic covariance function, Right: functions drawn from the posterior GP, after
conditioning on several observations (shown as black circles).

1.3 A refresher on Gaussian process regression

As the remainder of this thesis will dive deeper into how to use GPs as a nonparametric
component of probabilistic models and how to perform inference in such models, we attempt
to give a brief introduction to GPs and define some important terminology. Readers who
are familiar with GPs might skip this section, while interested readers who want to learn
more about GPs after reading this section might want to consult the excellent monograph by
Rasmussen and Williams (2005).
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In this section, we consider the function-space view of GPs. In particular, we consider a
non-linear mapping, f(x), from (potentially high-dimensional and structured) input, x, to
one-dimensional real-valued output. The function value, fi := f(xi), at a particular input, xi,
is a random variable and a GP is a collection of infinite random variables, any finite number
of which have a joint Gaussian distribution (Rasmussen and Williams, 2005). A GP is fully
specified by its mean function, mθ(x), and its covariance function or kernel, kθ(x, x′),

f(x) ∼ GP(mθ(x), kθ(x, x′)) (1.4)

where x and x′ denote the input locations at which the function f(·) is evaluated, and θ is a
small set of hyperparameters of the mean and covariance functions. Following the definition
of GPs above, we can write down the distribution of a finite collection of function values as
follows,

p




fi

fj

fr

...



∣∣∣∣∣∣∣∣∣∣∣
θ

 = N




fi

fj

fr

...

 ;


mfi

mfj

mfr

...

 ,


kfifi

kfifj
kfifr · · ·

kfjfi
kfjfj

kfjfr · · ·
kfrfi

kfrfj
kfrfr · · ·

...
...

... . . .



 . (1.5)

where the entries of the mean vector in the distribution above are the values of the mean
function evaluated at the input values, mfi

= mθ(xi), and similarly, the entries of the
covariance matrix are the values of covariance function evaluated at pairs of input values,
kfifj

= kθ(xi, xj). Note that we use the function values, e.g. fi, as subscripts to show that m

and k are the mean and covariance of the distribution over the function values. Typically,
the mean function is assumed to be a zero since the prior knowledge about the function f(·)
can be encapsulated in the form of the covariance function and its hyperparameters θ. The
family of the covariance function is selected based on prior knowledge about the function,
e.g. smooth, rough, wiggly or periodic. A popular covariance function is the exponentiated
quadratic or squared exponential kernel with automatic relevance determination,

kθ(x, x′) = σ2
f exp

(
−1

2

D∑
d=1

(xd − x′
d)2

l2d

)
, (1.6)

where ld is the private lengthscale for the d-th input dimension and σ2
f is the kernel variance,

and in this case θ = ({ld}Dd=1, σf ) are the kernel hyperparameters.
Gaussian processes are best known perhaps for their application to regression and clas-

sification. We briefly summarise the formulation for the regression case. Suppose we have
a training set comprising N D-dimensional input vectors {xn}Nn=1 and corresponding real
valued scalar observations {yn}Nn=1. Typical regression models assume that each observation
yn is formed from an unknown function f(·), evaluated at input xn, which is corrupted by
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additive, independent Gaussian noise,

yn = f(xn) + ϵn, (1.7)

where p(ϵn) = N (ϵn; 0, σ2
n). A GP as defined above can be used to specify a prior over

function f(·) and the corresponding probabilistic model is as follows,

f |θ ∼ GP(0, kθ(·, ·)), (1.8)
p(y|f, σ2

n) =
∏
n

N (yn; f(xn), σ2
n), (1.9)

where y is a vector comprising of all training outputs.
In regression problems, the tasks typically involve predicting the function value f∗ at

some unseen input x∗. This task also bears many names such as interpolation, forecasting,
or missing data imputation. When x∗ is at one of the training input points, the task now is
to denoise the observation to estimate the true underlying function value f∗. The generative
model described above provides a framework to obtain the predictive distribution of the
target function values. Because the joint distribution between the training observations and
the (test) latent functions is a multivariate normal distribution, the posterior can be obtained
using the conditional Gaussian distribution property. It is also a GP with the following mean
and covariance functions,

m̂(x) = kff (Kff + σ2
nI)−1y, (1.10)

k̂(x, x′) = kff ′ − kff (Kff + σ2
nI)−1kff ′ , (1.11)

where f is a vector whose elements are the function values at the training inputs, {fn :=
f(xn)}Nn=1, and kff and Kff are the covariance matrices between the test function values
and training function values, and the training function values and themselves, respectively.
This means that the predictive distribution of functions at unseen inputs or the denoising
distribution at training inputs are Gaussian, specified by evaluating the posterior mean and
covariance functions in eqs. (1.10) and (1.11) at the corresponding test inputs. Figure 1.1
shows some functions drawn from a GP prior and the GP posterior after conditioning on
some training points.

The procedure above allows us to obtain the GP posterior and make predictions at test
inputs, with a fixed set of kernel hyperparameters θ and noise variance σ2

n. However, these are
often not known in advance and are usually difficult to select manually. The fully Bayesian
approach can be used, that is, one can specify prior over the hyperparameters and obtain the
joint posterior p(f , θ, σ2

n|y). However, this procedure is often not analytically available and
requires approximation techniques such as MCMC. It is, therefore, a common practice to
only obtain one set of the hyperparameters {θ, σ2

n} by maximising the marginal likelihood of
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the hyperparameters and use them to obtain the posterior or for prediction. In the regression
case, the marginal likelihood can be conveniently obtained in closed-form and the log of
which is,

L(θ, σ2
n) = log p(y|θ, σ2

n)

= log
∫

p(y|f, σ2
n)p(f |θ)df

= logN (y; 0, Kff + σ2
nI)

= −1
2y⊺(Kff + σ2

nI)−1y− 1
2 log |Kff + σ2

nI| − n

2 log 2π. (1.12)

The first term in eq. (1.12) is the only term that touches the observed outputs and hence
controls how well the model fits the data. The second term controls the complexity of the
model. As a result, optimising the above objective will result in hyperparameters that balance
the data-fit quality of the model and the model complexity (Rasmussen and Williams, 2005).
Therefore, this procedure is often said to be robust to overfitting, though the optimisation
routine can get stuck at local maxima. Additionally, the (log) marginal likelihood can be used
to select a kernel family that is appropriate for the data at hand (Duvenaud et al., 2013).

The computational complexity of hyperparameter learning and prediction is largely
dominated by the cost to invert the matrix Kff + σ2

nI, as seen in eqs. (1.10) to (1.12). This
inversion costs O(N3) and the learning requires repeating this operation multiple times. Once
this has been performed, a subsequent prediction at a test input can be made in O(N2).

1.4 Thesis overview

Deploying Gaussian processes in practice is challenging due to the cumbersome computational
complexity (as described in the last section), and the analytical intractability when the
posterior or marginal densities cannot be obtained in closed-form. This thesis is concerned
with addressing these two challenges by developing novel deterministic approximate Bayesian
schemes with structured posterior approximations. In detail,

• Chapter 2 develops a novel unifying framework of sparse approximations for Gaussian
process regression and classification. The new framework unifies many existing approxi-
mations and develops new approximations, by viewing them as performing approximate
Bayesian inference using power expectation propagation. This view is a complementary
and orthogonal perspective to the popular approximate model view of sparse GPs of
Quiñonero-Candela and Rasmussen (2005). This chapter is a joint work with Josiah
Yan and Richard E. Turner.

• Chapter 3 extends the unifying framework in chapter 2 to GP latent variable and
state space models. This chapter provides a comprehensive review of existing literature
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on approximate inference for these models and develops novel inference and learning
algorithm based on (approximate) power expectation propagation. In the case of the
GP state space model, we discuss several mean-field and structured approximations for
the hidden variables, and three approximate uncertainty propagation techniques based
on linearisation, Gaussian projection, and simple Monte Carlo. This chapter is a joint
work with Richard E. Turner.

• Chapter 4 unifies and greatly extends several structured approximations for inference
and learning in deep GPs. The earlier version of this chapter, published in (Bui
et al., 2016), is a joint work with José Miguel Hernández-Lobato, Yingzhen Li, Daniel
Hernández-Lobato and Richard E. Turner. This chapter, however, significantly extends
the earlier work in light of the results in chapter 2. This chapter also clearly connects
many recently developed approaches for inference and learning in deep GPs, that were
previously understood to be very different, by viewing them as special cases of power
expectation propagation using a common structured posterior approximation.

While each of these chapters has been written such that a chapter can be read fairly
independently of other chapters, one would be better served reading chapter 2 first before
chapters 3 and 4. We conclude and suggest several future directions in chapter 5.





Chapter 2

Sparse approximations for Gaussian
process regression and classification

This chapter is based on the JMLR paper, “A Unifying Framework for Sparse Gaussian
Process Approximation using Power Expectation Propagation”, which is a joint work with
Josiah Yan and Richard E. Turner. Section 2.6 is new and has not been discussed in the
paper.

2.1 Introduction

Gaussian processes (GPs) are powerful nonparametric distributions over continuous functions
that are routinely deployed in probabilistic modelling for applications including regression and
classification (Rasmussen and Williams, 2005), representation learning (Lawrence, 2005), state
space modelling (Wang et al., 2005), active learning (Houlsby et al., 2011), reinforcement
learning (Deisenroth, 2010), black-box optimisation (Snoek et al., 2012), and numerical
methods (Mahsereci and Hennig, 2015). GPs have many elegant theoretical properties,
but their use in probabilistic modelling is greatly hindered by analytic and computational
intractabilities. A large research effort has been directed at this fundamental problem,
resulting in the development of a plethora of sparse approximation methods that can sidestep
these intractabilities (Csató, 2002; Csató and Opper, 2002; Schwaighofer and Tresp, 2002;
Seeger et al., 2003; Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani,
2006; Snelson, 2007; Naish-Guzman and Holden, 2007; Titsias, 2009; Figueiras-Vidal and
Lázaro-Gredilla, 2009; Álvarez et al., 2010; Qi et al., 2010; Bui and Turner, 2014; Frigola et al.,
2014; McHutchon, 2014; Hensman et al., 2015; Hernández-Lobato and Hernández-Lobato,
2016; Matthews et al., 2016).

This chapter develops a general sparse approximate inference framework based upon Power
Expectation Propagation (PEP) (Minka, 2004) that unifies many of these approximations,
extends them significantly, and provides improvements in practical settings. In this way, the
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chapter provides a complementary perspective to the seminal review of Quiñonero-Candela
and Rasmussen (2005), viewing sparse approximations through the lens of approximate
inference, rather than approximate generative models.

The chapter begins by reviewing several frameworks for sparse approximation focussing
on the GP regression and classification setting (section 2.2). It then lays out the new unifying
framework and the relationship to existing techniques (section 2.3). Readers whose focus is
to understand the new framework might want to move directly to this section. Finally, a
thorough experimental evaluation is presented in section 2.4.

2.2 Pseudo-point approximations for GP regression and clas-
sification

This section provides a concise introduction to GP regression and classification and then
reviews several pseudo-point based sparse approximation schemes for these models. For
simplicity, we first consider a supervised learning setting in which the training set comprises N

D-dimensional input and scalar output pairs {xn, yn}Nn=1 and the goal is to produce probabilis-
tic predictions for the outputs corresponding to novel inputs. A non-linear function, f(x), can
be used to parameterise the probabilistic mapping between inputs and outputs, p(yn|f, xn, θ).
Typical choices for the probabilistic mapping are Gaussian p(yn|f, xn, θ) = N (yn; f(xn), σ2

y)
for the regression setting (yn ∈ R) and Bernoulli p(yn|f, xn, θ) = B(yn; Φ(f(xn))) with a
sigmoidal link function Φ(f) for the binary classification setting (yn ∈ {0, 1}). Whilst it is pos-
sible to specify the non-linear function f via an explicit parametric form, a more flexible and
elegant approach employs a GP prior over the functions directly, p(f |θ) = GP(f ; 0, kθ(·, ·)),
here assumed without loss of generality to have a zero mean-function and a covariance
function kθ(x, x′). This class of probabilistic models has a joint distribution

p(f, y|θ) = p(f |θ)
N∏

n=1
p(yn|f(xn), θ) (2.1)

where we have collected the observations into the vector y and suppressed the inputs on the
left hand side to lighten the notation.

This model class contains two potential sources of intractability. First, the possibly non-
linear likelihood function can introduce analytic intractabilities that require approximation.
Second, the GP prior entails an O(N3) complexity that is computationally intractable for
many practical problems. These two types of intractability can be handled by combining
standard approximate inference methods with pseudo-point approximations that summarise
the full Gaussian process via M pseudo datapoints leading to an O(NM2) cost. The main
approaches of this sort can be characterised in terms of two parallel frameworks that are
described in the following sections.
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2.2.1 Sparse GP approximation via approximate generative models

The first framework begins by constructing a new generative model that is similar to the
original, so that inference in the new model might be expected to produce similar results, but
which has a special structure that supports efficient computation. Typically, this approach
involves approximating the Gaussian process prior as it is the origin of the cubic cost. If there
are analytic intractabilities in the approximate model, as will be the case in e.g. classification
or state-space models, then these will require approximate inference to be performed in the
approximate model.

The seminal review by Quiñonero-Candela and Rasmussen (Quiñonero-Candela and
Rasmussen, 2005) reinterprets a family of approximations in terms of this unifying framework.
The GP prior is approximated by identifying a small set of M ≤ N pseudo-points u, here
assumed to be disjoint from the training function values f so that f = {u, f , f̸=u,f}. The GP
prior is then decomposed using the product rule

p(f |θ) = p(u|θ)p(f |u, θ)p(f̸=u,f |f , u, θ). (2.2)

Of central interest is the relationship between the pseudo-points and the training function
values p(f |u, θ) = N (f ; KfuK−1

uuu, Dff ) where Dff = Kff − Qff and Qff = KfuK−1
uuKuf .

Here we have introduced matrices corresponding to the covariance function’s evaluation
at the pseudo-input locations {zm}Mm=1, so that [Kuu]mm′ = kθ(zm, zm′) and similarly
for the covariance between the pseudo-input and data locations [Kuf ]mn = kθ(zm, xn).
Importantly, this term saddles learning with a cubic complexity cost. Computationally
efficient approximations can be constructed by simplifying these dependencies between the
pseudo-points and the data function values q(f |u, θ) ≈ p(f |u, θ). In order to benefit from
these efficiencies at prediction time as well, a second approximation is made whereby the
pseudo-points form a bottleneck between the data function values and test function values
p(f̸=u,f |u, θ) ≈ p(f̸=u,f |f , u, θ). Together, the two approximations result in an approximate
prior process,

q(f |θ) = p(u|θ)q(f |u, θ)p(f̸=u,f |u, θ). (2.3)

We can now compactly summarise a number of previous approaches to GP approximation as
special cases of the choice

q(f |u, θ) =
B∏

b=1
N (fb; Kfb,uK−1

uuu, αDfb,fb
) (2.4)

where b indexes B disjoint blocks of data-function values. The Deterministic Training
Conditional (DTC) approximation uses α→ 0; the Fully Independent Training Conditional
(FITC) approximation uses α = 1 and B = N ; the Partially Independent Training Conditional
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(PITC) approximation uses α = 1 (Quiñonero-Candela and Rasmussen, 2005; Schwaighofer
and Tresp, 2002).

In a moment we will consider inference in the modified models, before doing so we note
that it is possible to construct more flexible modified prior processes using the inter-domain
approach that places the pseudo-points in a different domain from the data, defined by
a linear integral transform g(z) =

∫
w(z, z′)f(z′)dz′. Here the window w(z, z′) might be

a Gaussian blur or a wavelet transform. The pseudo-points are now placed in the new
domain g = {u, g̸=u} where they induce a potentially more flexible Gaussian process in the
old domain f through the linear transform (see Figueiras-Vidal and Lázaro-Gredilla (2009)
for FITC). The expressions in this section still hold, but the covariance matrices involving
pseudo-points are modified to take account of the transform,

[Kuu]mm′ =
∫

w(zm, z)kθ(z, z′)w(z′, zm′)dzdz′, [Kuf ]mn =
∫

w(zm, z)kθ(z, xn)dz. (2.5)

Having specified modified prior processes, these can be combined with the original
likelihood function to produce a new generative models. In the case of point-wise likelihoods,
we have

q(y, f |θ) = q(f |θ)
N∏

n=1
p(yn|f(xn), θ). (2.6)

Inference and learning can now be performed using the modified model using standard
techniques. Due to the form of the new prior process, the computational complexity is
O(NM2) (for testing, N becomes the number of test datapoints, assuming dependencies
between the test-points are not computed).1 For example, in the case of regression, the
posterior distribution over function values f (necessary for inference and prediction) has a
simple analytic form

q(f |y, θ) = GP(f ; µf |y, Σf |y), µf |y = Qff K−1
ff y, Σf |y = Kff −Qff K−1

ff Qff (2.7)

where Kff = Qff + blkdiag({αbDfbfb
}Bb=1) + σ2

yI and blkdiag builds a block-diagonal matrix
from its inputs. One way to understand the origin of the computational gains is that the
new generative model corresponds to a form of factor analysis in which the M pseudo-points
determine the N function values at the observed data (as well as at potential test locations)
via a linear Gaussian relationship. This results in low rank (sparse) structure in Kff that
can be exploited through the matrix inversion and determinant lemmas. In the case of
regression, the new model’s marginal likelihood also has an analytic form that allows the

1It is assumed that the maximum size of the blocks is not greater than the number of pseudo-points
dim(fb) ≤ M .
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hyperparameters, θ, to be learned via optimisation

log q(y|θ) = −N

2 log(2π)− 1
2 log |Kff | −

1
2y⊺K−1

ff y. (2.8)

The approximate generative model framework has attractive properties. The cost of
inference, learning, and prediction has been reduced from O(N3) to O(NM2) and in many
cases, accuracy can be maintained with a relatively small number of pseudo-points. The
pseudo-point input locations can be optimised by maximising the new model’s marginal
likelihood (Snelson and Ghahramani, 2006). When M = N and the pseudo-points and
observed data inputs coincide, then FITC and PITC are exact which appears reassuring.
However, the framework is philosophically challenging as the elegant separation of model
and (approximate) inference has been lost. Are we allowed in an online inference setting,
for example, to add new pseudo-points as more data are acquired and the complexity of the
underlying function is revealed? This seems sensible, but effectively changes the modelling
assumptions as more data are seen. Devout Bayesians might then demand that we perform
model averaging for coherence. Similarly, if the pseudo-input locations are optimised, the
principled non-parametric model has suddenly acquired MD parameters and with them all of
the concomitant issues of parametric models including overfitting and optimisation difficulties
(Bauer et al., 2016). As the pseudo-inputs are considered part of the model, the Bayesians
might then suggest that we place priors over the pseudo-inputs and to perform full-blown
probabilistic inference over them.

These awkward questions arise because the generative modelling interpretation of pseudo-
data entangles the assumptions made about the data with the approximations required to
perform inference. Instead, the modelling assumptions (which encapsulate prior understanding
of the data) should remain decoupled from inferential assumptions (which leverage structure
in the posterior for tractability). In this way, pseudo-data should be introduced when
we seek to perform computationally efficient approximate inference, leaving the modelling
assumptions unchanged as we refine and improve approximate inference. Indeed, even under
the generative modelling perspective, for analytically intractable likelihood functions, an
additional approximate inference step is required, begging the question; why not handle
computational and analytic intractabilities together at inference time?

2.2.2 Sparse GP approximation via approximate inference: VFE

The approximate generative model framework for constructing sparse approximations is
philosophically troubling. In addition, learning pseudo-point input locations via optimisation
of the model likelihood can perform poorly e.g. for DTC it is prone to overfitting even for
M ≪ N (Titsias, 2009). This motivates a more direct approach that commits to the true
generative model and performs all of the necessary approximation at inference time.
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Perhaps the most well known approach in this vein is Titsias’s beautiful sparse variational
free-energy (VFE) method (Titsias, 2009). The original presentation of this work employs
finite variable sets and an augmentation trick that arguably obscures its full elegance. Here
instead we follow Matthews et al. (2016) and lower bound the marginal likelihood using a
distribution q(f) over the entire infinite dimensional function,

log p(y|θ) = log
∫

p(y, f |θ)df ≥
∫

q(f) log p(y, f |θ)
q(f) df = Eq(f)

[
log p(y, f |θ)

q(f)

]
= F(q, θ).

The VFE bound can be written as the difference between the model log-marginal likelihood
and the KL divergence between the variational distribution and the true posterior F(q, θ) =
log p(y|θ)−KL(q(f)||p(f |y, θ)). The bound is therefore saturated when q(f) = p(f |y, θ), but
this is intractable. Instead, pseudo-points are made explicit, f = {u, f̸=u}, and an approxi-
mate posterior distribution used of the following form q(f) = q(u, f̸=u|θ) = p(f̸=u|u, θ)q(u).
Under this approximation, the set of variables f̸=u do not experience the data directly, but
rather only through the pseudo-points, as can be seen by comparison to the true posterior
p(f |y, θ) = p(f̸=u|y, u, θ)p(u|y, θ). Importantly, the form of the approximate posterior causes
a cancellation of the prior conditional term, which gives rise to a bound with O(NM2)
complexity,

F(q, θ) = Eq(f |θ)

[
log p(y|f, θ)������

p(f̸=u|u, θ)p(u|θ)

������
p(f̸=u|u, θ)q(u)

]
=
∑

n

Eq(f |θ) [log p(yn|fn, θ)]−KL(q(u)||p(u|θ)).

For regression with Gaussian observation noise, the calculus of variations can be used to
find the optimal approximate posterior Gaussian process over pseudo-data qopt(f |θ) =
p(f̸=u|u, θ)qopt(u) which has the form

qopt(f |θ) = GP(f ; µf |y, Σf |y), µf |y = Qff K̃−1
ff y, Σf |y = Kff −Qff K̃−1

ff Qff (2.9)

where K̃ff = Qff + σ2
yI. This process is identical to that recovered when performing exact

inference under the DTC approximate regression generative model (Titsias, 2009) (see
eq. (2.7)). In fact, DTC was originally derived using the same KL argument (Csató, 2002;
Csató et al., 2002; Seeger et al., 2003). However, this fact is not well-known in the literature,
perhaps because these articles considered only the optimal approximate posterior and not
the free-energy, and that the optimal approximate posterior was later reinterpreted as an
exact posterior in an approximate model (Quiñonero-Candela and Rasmussen, 2005). The
optimised free-energy is

F(qopt, θ) = −N

2 log(2π)− 1
2 log |K̃ff | −

1
2y⊺K̃−1

ff y− 1
2σ2

y

trace(Kff −Qff ). (2.10)
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Notice that the free-energy has an additional trace term as compared to the marginal
likelihood obtained from the DTC generative model approach (see eq. (2.8) as α→ 0). The
trace term is proportional to the sum of the variances of the training function values given
the pseudo-points, p(f |u), it thereby encourages pseudo-input locations that explain the
observed data well. This term acts as a regulariser that prevents overfitting which plagues
the generative model formulation of DTC.

The VFE approach can be extended to non-linear models including classification (Hens-
man et al., 2015), latent variable models (Titsias and Lawrence, 2010) and state space models
(Frigola et al., 2014; McHutchon, 2014) by restricting q(u) to be Gaussian and optimising
its parameters. Indeed, this uncollapsed form of the bound can be beneficial in the context
of regression too as it is amenable to stochastic optimisation (Hensman et al., 2013). Addi-
tional approximation is sometimes required to compute any remaining intractable non-linear
integrals, but these are often low-dimensional. For example, when the likelihood depends on
only one latent function value, as is typically the case for regression and classification, the
bound requires only 1D integrals Eq(fn) [log p(yn|fn, θ)] that can be evaluated using quadrature
(Hensman et al., 2015), for example.

The VFE approach can also be extended to employ inter-domain variables (Álvarez et al.,
2010; Tobar et al., 2015; Matthews et al., 2016). The approach considers the augmented
generative model p(f, g|θ) where to remind the reader the auxiliary process is defined by
a linear integral transformation, g(z) =

∫
w(z, z′)f(z′)dz′. Variational inference is now

performed over both latent processes q(f, g) = q(f, u, g̸=u|θ) = p(f, g̸=u|u, θ)q(u). Here
the pseudo-data have been placed into the auxiliary process with the idea being that
they can induce richer dependencies in the original domain that model the true posterior
more accurately. In fact, if the linear integral transformation is parameterised then the
transformation can be learned so that it approximates the posterior more accurately.

A key concept underpinning the VFE framework is that the pseudo-input locations (and
the parameters of the inter-domain transformation, if employed) are purely parameters of
the approximate posterior, hence the name ‘variational parameters’. This distinction is
important as it means, for example, that we are free to add pseudo-data as more structure is
revealed the underlying function without altering the modelling assumptions (e.g. see Bui
et al. (2017a) for an example in online inference). Moreover, since the pseudo-input locations
are variational parameters, placing priors over them is unnecessary in this framework. Unlike
the model parameters, optimisation of variational parameters is automatically protected from
overfitting as the optimisation is minimising the KL divergence between the approximate
posterior and the true posterior. Indeed, although the DTC posterior is recovered in the
regression setting, as we have seen the free-energy is not equal to the log-marginal likelihood
of the DTC generative model, containing an additional term that substantially improves the
quality of the optimised pseudo-point input locations.
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The fact that the form of the DTC approximation can be recovered from a direct
approximate inference approach and that this new perspective leads to superior pseudo-input
optimisation, raises the question; can this also be done for FITC and PITC?

2.2.3 Sparse GP approximation via approximate inference: EP

Expectation Propagation (EP) is a deterministic inference method (Minka, 2001b) that is
known to outperform VFE methods in GP classification when unsparsified, fully-factored
Gaussian approximations are used (Nickisch and Rasmussen, 2008). Motivated by this
observation, EP has been combined with the approximate generative modelling approach
to handle non-linear likelihoods (Naish-Guzman and Holden, 2007; Hernández-Lobato and
Hernández-Lobato, 2016). This begs the question: can the sparsification and the non-linear
approximation be handled in a single EP inference stage, as for VFE? Astonishingly, Csató
and Opper not only developed such a method in 2002 (Csató and Opper, 2002), predating
much of the work mentioned above, they showed that it is equivalent to applying the FITC
approximation and running EP if further approximation is required. In our view, this is a
central result, but it appears to have been largely overlooked by the field. Snelson was made
aware of it when writing his thesis (Snelson, 2007), briefly acknowledging Csató and Opper’s
contribution. Qi et al. (2010) extended Csató and Opper’s work to utilise inter-domain
pseudo-points and they additionally recognised that the EP energy function at convergence
is equal to the FITC log-marginal likelihood approximation. Interestingly, no additional term
arises as it does when the VFE approach generalised the DTC generative model approach.
We are unaware of other work in this vein.

It is hard to be known for certain why these important results are not widely known, but
a contributing factor is that the exposition in these papers is largely at Marr’s algorithmic
level (Dawson, 1998), and does not focus on the computational level making them challenging
to understand. Moreover, Csató and Opper’s paper was written before EP was formulated in
a general way and the presentation, therefore, does not follow what has become the standard
approach. In fact, as the focus was online inference, Assumed Density Filtering was employed
rather than full-blown EP. One of the main contributions of this chapter is to provide a clear
computational exposition including an explicit form of the approximating distribution and
full details about each step of the EP procedure. In addition, to bring clarity we make the
following novel contributions:

• We show that a generalisation of EP called Power EP can subsume the EP and VFE
approaches (and therefore FITC and DTC) into a single unified framework. More
precisely, the fixed points of Power EP yield the FITC and VFE posterior distribution
under different limits and the Power EP marginal likelihood estimate (the negative
‘Power EP energy’) recover the FITC marginal likelihood and the VFE too. Critically,
the connection to the VFE method leans on the new interpretation of Titsias’s approach
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(Matthews et al., 2016) outlined in the previous section that directly employs the
approximate posterior over function values (rather than augmenting the model with
pseudo-points). The connection therefore also requires a formulation of power EP that
involves KL divergence minimisation between stochastic processes.

• We show how versions of PEP that are intermediate between the existing VFE and
EP approaches can be derived, as well as mixed approaches that treat some data
variationally and others using EP. We also show how PITC emerges from the same
framework and how to incorporate inter-domain transforms. For regression with
Gaussian observation noise, we obtain analytical expressions for the fixed points of
Power EP in a general case that includes all of these extensions as well as the form of the
Power EP marginal likelihood estimate at convergence that is useful for hyperparameter
and pseudo-input optimisation.

• We consider (Gaussian) regression and probit classification as canonical models on
which to test the new framework and demonstrate through exhaustive testing that
versions of PEP intermediate between VFE and EP perform substantially better on
average. The experiments also shed light on situations where VFE is to be preferred to
EP and vice versa which is an important open area of research.

Many of the new theoretical contributions described above are summarised in fig. 2.1
along with their relationship to previous work.

2.3 A new unifying view using Power Expectation Propaga-
tion

In this section, we provide a new unifying view of sparse approximation using Power Expec-
tation Propagation (PEP or Power EP) (Minka, 2004). We review Power EP, describe how
to apply it for sparse GP regression and classification, and then discuss its relationship to
existing methods.

2.3.1 The joint-distribution view of approximate inference and learning

One way of understanding the goal of distributional inference approximations, including the
VFE method, EP and Power EP, is that they return an approximation of a tractable form to
the model joint-distribution evaluated on the observed data. In the case of GP regression
and classification, this means q∗(f |θ) ≈ p(f, y|θ) where ∗ is used to denote an unnormalised
process. Why is the model joint-distribution a sensible object of approximation? The joint
distribution can be decomposed into the product of the posterior distribution and the marginal
likelihood, p(f, y|θ) = p∗(f |y, θ) = p(f |y, θ)p(y|θ), the two inferential objects of interest. A
tractable approximation to the joint can therefore be similarly decomposed q∗(f |θ) = Zq(f |θ)
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Fig. 2.1 A unified view of pseudo-point GP approximations applied to A) regression and
B) classification. Every point in the algorithm polygons corresponds to a form of GP
approximation. Previous algorithms correspond to labelled vertices. The new Power EP
framework encompasses the three polygons, including their interior.

into a normalised component that approximates the posterior q(f |θ) ≈ p(f |y, θ) and the
normalisation constant which approximates the marginal likelihood Z ≈ p(y|θ). In other
words, the approximation of the joint simultaneously returns approximations to the posterior
and marginal likelihood. In the current context tractability of the approximating family
means that it is analytically integrable and that this integration can be performed with an
appropriate computational complexity. We consider the approximating family comprising
unnormalised GPs, q∗(f |θ) = ZGP(f ; mf , Vff′).

The VFE approach can be reformulated in the new context using the unnormalised KL
divergence (Zhu and Rohwer, 1997) to measure the similarity between the approximation
and the joint distribution

KL(q∗(f |θ)||p(f, y|θ)) =
∫

q∗(f) log q∗(f)
p(f, y|θ)df +

∫
(p(f, y|θ)− q∗(f)) df. (2.11)

The unnormalised KL divergence generalises the KL divergence to accommodate unnormalised
densities. It is always non-negative and collapses back to the standard form when its arguments
are normalised. Minimising the unnormalised KL with respect to q∗(f |θ) = ZVFEq(f)
encourages the approximation to match both the posterior and marginal-likelihood, and it
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yields analytic solutions

qopt(f) = argmin
q(f)∈Q

KL(q(f)||p(f |y, θ)), and Zopt
VFE = exp(F(qopt(f), θ)). (2.12)

That is, the standard variational free-energy approximation to the posterior and marginal
likelihood is recovered. One of the pedagogical advantages of framing VFE in this way is
that approximation of the posterior and marginal likelihood are committed to upfront, in
contrast to the traditional derivation which begins by targeting approximation of the marginal
likelihood, but shows that approximation of the posterior emerges as an essential part of this
scheme (see section 2.2.2). A disadvantage is that optimisation of hyperparameters must
logically proceed by optimising the marginal likelihood approximation, Zopt

VFE, and at first
sight therefore appears to necessitate different objective functions for q∗(f |θ) and θ (unlike
the standard view which uses a single objective from the beginning). However, it is easy
to show that maximising p(y|θ) − KL(q∗(f |θ)||p(f, y|θ)) directly for both q∗(f |θ) and θ is
equivalent (see section A.1).

2.3.2 The approximating distribution employed by Power EP

Power EP also approximates the joint-distribution employing an approximating family whose
form mirrors that of the target,

p∗(f |y, θ) = p(f |y, θ)p(y|θ) = p(f |θ)
∏
n

p(yn|f, θ) ≈ p(f |θ)
∏
n

tn(u) = q∗(f |θ). (2.13)

Here, the approximation retains the exact prior, but each likelihood term in the exact
posterior, p(yn|fn, θ), is approximated by a simple factor tn(u) that is assumed Gaussian.
These simple factors will be iteratively refined by the PEP algorithm such that they will
capture the effect that each true likelihood has on the posterior.

Before describing the details of the PEP algorithm, it is illuminating to consider an
alternative interpretation of the approximation. Together, the approximate likelihood
functions specify an unnormalised Gaussian over the pseudo-points that can be written∏

n tn(u) = N (ỹ; W̃u, Σ̃).
The approximate posterior above can therefore be thought of as the (exact) GP posterior

resulting from a surrogate regression problem with surrogate observations ỹ that are generated
from linear combinations of the pseudo-points and additive surrogate noise ỹ = W̃u + Σ̃1/2ϵ.
The PEP algorithm will iteratively refine {ỹ, W̃, Σ̃} such that exact inference in the simple
surrogate regression model returns a posterior and marginal likelihood estimate that is ‘close’
to that returned by performing exact inference in the intractable complex model (see fig. 2.2).
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true posterior approximate posterior

true joint distribution approximate joint distribution

refine

Fig. 2.2 Perspectives on the approximating family. The true joint distribution over the
unknown function f and the N datapoints y (top left) comprises the GP prior and an
intractable likelihood function. This is approximated by a surrogate regression model with
a joint distribution over the function f and M surrogate datapoints ỹ (top right). The
surrogate regression model employs the same GP prior, but uses a Gaussian likelihood function
p(ỹ|u, W̃, Σ̃) = N (ỹ; W̃u, Σ̃). The intractable true posterior (bottom left) is approximated
by refining the surrogate data ỹ their input locations z and the parameters of the surrogate
model W̃ and Σ̃.

2.3.3 The EP algorithm

One method for updating the approximate likelihood factors tn(u) is to minimise the
unnormalised KL Divergence between the joint distribution and each of the distributions
formed by replacing one of the likelihoods by the corresponding approximating factor (Li
et al., 2015),

argmax
tn(u)

KL
[
p(f, y|θ)

∣∣∣∣∣∣∣∣p(f, y|θ)tn(u)
p(yn|fn, θ)

]
= argmax

tn(u)
KL[p∗

\n(f)p(yn|fn, θ)||p∗
\n(f)tn(u)]. (2.14)

Here we have introduced the leave-one-out joint p∗
\n(f) = p(f, y|θ)/p(yn|fn, θ) which makes

clear that minimisation will cause the approximate factors to approximate the likelihoods
in the context of the leave-one-out joint. Unfortunately, such an update is still intractable.
Instead, EP approximates this idealised procedure by replacing the exact leave-one-out
joint on both sides of the KL by the approximate leave-one-out joint (called the cavity)
p∗

\n(f) ≈ q∗
\n(f) = q∗(f)/tn(u). Not only does this improve tractability, but it also means

that the new procedure effectively refines the approximating distribution directly at each
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stage, rather than setting the component parts in isolation,

KL([q∗
\n(f)p(yn|fn, θ)||q∗

\n(f)tn(u)] = KL([q∗
\n(f)p(yn|fn, θ)||q∗(f)]. (2.15)

However, the updates for the approximating factors are now coupled and so the updates
must now be iterated, unlike in the idealised procedure. In this way, EP iteratively refines
the approximate factors or surrogate likelihoods so that the GP posterior of the surrogate
regression task best approximates the posterior of the original regression/classification
problem.

2.3.4 The Power EP algorithm

Power EP is, algorithmically, a mild generalisation of the EP algorithm that instead removes
(or includes) a fraction α of the approximate (or true) likelihood functions in the following
steps:

1. Deletion: compute the cavity distribution by removing a fraction of one approximate
factor, q\n(f |θ) ∝ q∗(f |θ)/tα

n(u).
2. Projection: first, compute the tilted distribution by incorporating a corresponding

fraction of the true likelihood into the cavity, p̃(f) = q\n(f |θ)pα(yn|fn). Second, project the
tilted distribution onto the approximate posterior using the KL divergence for unnormalised
densities,

q∗(f |θ)← argmin
q∗(f |θ)∈Q

KL(p̃(f)||q∗(f |θ)). (2.16)

Here Q is the set of allowed q∗(f |θ) defined by eq. (2.13).
3. Update: compute a new fraction of the approximate factor by dividing the new approxi-

mate posterior by the cavity, tα
n,new(u) = q∗(f |θ)/q\n(f |θ), and incorporate this fraction

back in to obtain the updated factor, tn(u) = t1−α
n,old(u)tα

n,new(u).

The above steps are iteratively repeated for each factor that needs to be approximated. Notice
that the procedure only involves one likelihood factor to be handled at a time. In the case of
analytically intractable likelihood functions, this often requires only low dimensional integrals
to be computed. In other words, PEP has transformed a high dimensional intractable integral
that is hard to approximate into a set of low dimensional intractable integrals that are simpler
to approximate. The procedure is not, in general guaranteed to converge but we did not
observe any convergence issues in our experiments. Furthermore, it can be shown to be
numerically stable when the factors are log-concave (as in GP regression and classification)
(Seeger, 2008). If Power EP converges, the fractional updates are equivalent to running the
original EP procedure, but replacing the KL minimisation with an α-divergence minimisation
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(Zhu and Rohwer, 1995; Minka, 2005),

Dα[p∗(f)||q∗(f)] = 1
α(1− α)

∫ [
αp∗(f) + (1− α)q∗(f)− p∗(f)αq∗(f)1−α

]
df. (2.17)

When α = 1, the α-divergence is the inclusive KL divergence D1[p∗(f)||q∗(f)] = KL[p∗(f)||q∗(f)]
recovering EP as expected from the PEP algorithm. As α→ 0 the exclusive KL divergence is
recovered, D→0[p∗(f)||q∗(f)] = KL[q∗(f)||p∗(f)], and since minimising a set of local exclusive
KL divergences is equivalent to minimising a single global exclusive KL divergence (Minka,
2005), the Power EP solution is the minimum of a variational free-energy (see section A.2 for
more details). In the current case, we will now show that these cases of Power EP recover
FITC and Titsias’s VFE solution respectively.

2.3.5 General results for Gaussian process Power EP

This section describes the Power EP steps in finer detail showing the complexity is O(NM2)
and laying the groundwork for the equivalence relationships. The section A.6 includes a full
derivation.

We start by defining the approximate factors to be in natural parameter form, making
it simple to combine and delete them, tn(u) = Ñ (u; zn, T1,n, T2,n) = zn exp(u⊺T1,n −
1
2u⊺T2,nu). We consider full rank T2,n, but will show that the optimal form is rank 1.
The parameterisation means the approximate posterior over the pseudo-points has natural
parameters T1,u = ∑

n T1,n and T2,u = K−1
uu + ∑

n T2,n inducing an approximate GP
posterior, GP(f ; mf , Vff′) with mean and covariance function,

mf = KfuK−1
uuT−1

2,uT1,u; Vff′ = Kff′ −Qff′ + KfuK−1
uuT−1

2,uK−1
uuKuf′ . (2.18)

Deletion: The cavity for datapoint n, q\n(f) ∝ q∗(f)/tα
n(u), has a similar form to the

posterior, but the natural parameters are modified by the deletion step, T\n
1,u = T1,u −αT1,n

and T\n
2,u = T2,u − αT2,n, yielding a new mean and covariance function

m
\n
f = KfuK−1

uuT\n,−1
2,u T\n

1,u; V
\n

ff′ = Kff′ −Qff′ + KfuK−1
uuT\n,−1

2,u K−1
uuKuf′ . (2.19)

Projection: The central step in Power EP is the projection. Obtaining the new approximate
unnormalised posterior q∗(f) by minimising KL(p̃(f)||q∗(f)) would naïvely appear intractable.
Fortunately,

Remark 1. Because of the structure of the approximate posterior, q(f) = p(f̸=u|u)q(u),
the objective, KL(p̃(f)||q∗(f)) is minimised when Ep̃(f)[ϕ(u)] = Eq∗(u)[ϕ(u)], where ϕ(u) =
[u, uu⊺] are the sufficient statistics, that is when the moments at the pseudo-inputs are
matched.
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This is the central result from which computational savings are derived. Furthermore, this
moment matching condition would appear to necessitate computation of a set of integrals to
find the zeroth, first and second moments. However, the technique known as ‘differentiation
under the integral sign’ (see e.g. Brown, 1986) provides a useful shortcut that only requires one
integral to compute the log-normaliser of the tilted distribution, log Z̃n = logEq\n(f)[pα(yn|fn)],
before differentiating w.r.t. the cavity mean to give

mu = m\n
u + V\n

ufn
d log Z̃n

dm
\n
fn

; Vu = V\n
u + V\n

ufn
d2 log Z̃n

d(m\n
fn )2

V\n
fnu. (2.20)

Update: Having computed the new approximate posterior, the approximate factor tn,new(u) =
q∗(f)/q\n(f) can be straightforwardly obtained, resulting in,

T1,n,new = V−1
u mu − (V\n

u )−1m\n
u , T2,n,new = V−1

u − (V\n
u )−1, zα

n = Z̃neG(q\n
∗ (u))−G(q∗(u)),

where we have defined the log-normaliser G(Ñ (u; z, T1, T2)) = log
∫
Ñ (u; z, T1, T2)du.

Remarkably, these results and eqs. 2.20 reveals that T2,n,new is a rank-1 matrix. As a
result, the minimal and simplest way to parameterise the approximate factor is tn(u) =
znN (KfnuK−1

uuu; gn, vn), where gn and vn are scalars, resulting in significant memory saving
and an O(NM2) cost.

In addition to providing the approximate posterior after convergence, Power EP also
provides an approximate log-marginal likelihood for model selection and hyperparameter
optimisation,

logZPEP(θ) = log
∫

p(f |θ)
∏
n

tn(u)df = G(q∗(u))− G(p∗(u)) +
∑

n

log zn. (2.21)

Armed with these general results, we now consider the implications for Gaussian Process
regression.

2.3.6 Gaussian regression case

When the model contains Gaussian likelihood functions, closed-form expressions for the
Power EP approximate factors at convergence can be obtained and hence the approximate
posterior:

tn(u) = N (KfnuK−1
uuu; yn, αDfnfn + σ2

y), q(u) = N (u; KufK
−1
ff y, Kuu −Kuf K−1

ff Kfu)

where Kff = Qff + αdiag(Dff ) + σ2
yI and Dff = Kff −Qff as defined in section 2.2. These

analytic expressions can be rigorously proven to be the stable fixed point of the Power EP
procedure using remark 1. Briefly, assuming the factors take the form above, the natural



24 Sparse approximations for Gaussian process regression and classification

parameters of the cavity q\n(u) become,

T\n
1,u = T1,u − αγnynKfnuK−1

uu, T\n
2,u = T2,u − αγnK−1

uuKufnKfnuK−1
uu, (2.22)

where γ−1
n = αDfnfn + σ2

y . The subtracted quantities in the equations above are exactly
the contribution the likelihood factor makes to the cavity distribution (see remark 1) so∫

q\n(f)pα(yn|fn)df̸=u = q\n(u)
∫

p(fn|u)pα(yn|fn)dfn ∝ q(u). Therefore, the posterior ap-
proximation remains unchanged after an update and the form for the factors above is the
fixed point. Moreover, the approximate log-marginal likelihood is also analytically tractable,

logZPEP = −N

2 log(2π)− 1
2 log |Kff | −

1
2y⊺K−1

ff y− 1− α

2α

∑
n

log
(
1 + αDfnfn/σ2

y

)
.

We now look at special cases and the correspondence to the methods discussed in section 2.2.

Remark 2. When α = 1 [EP], the Power EP posterior becomes the FITC posterior in eq. (2.7)
and the Power EP approximate marginal likelihood becomes the FITC marginal likelihood
in eq. (2.8). In other words, the FITC approximation for GP regression is, surprisingly,
equivalent to running an EP algorithm for sparse GP posterior approximation to convergence.

Remark 3. As α → 0 the approximate posterior and approximate marginal likelihood are
identical to that of the VFE approach in eqs. (2.9) and (2.10) (Titsias, 2009). This result
uses the limit: limx→0 x−1 log(1 + x) = 1. So FITC and Titsias’s VFE approach employ the
same form of pseudo-point approximation, but refine it in different ways.

2.3.7 Extensions: structured, inter-domain and multi-power Power EP
approximations

The framework can now be generalised in three orthogonal directions:

1. enable structured approximations to be handled that retain more dependencies in the
spirit of PITC (see section 2.2.1)

2. incorporate inter-domain pseudo-points thereby adding further flexibility to the form
of the approximate posterior

3. employ different powers α for each factor (thereby enabling e.g. VFE updates to be
used for some datapoints and EP for others).

Given the groundwork above, these three extensions are straightforward. In order to handle
structured approximations, we take inspiration from PITC and partition the data into
B disjoint blocks yb = {yn}n∈Bb

(see section 2.2.1). Each PEP factor update will then
approximate an entire block which will contain a set of datapoints, rather than just a single
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one. This is a style of EP approximation that has recently been used to distribute Monte
Carlo algorithms across many machines (Gelman et al., 2014b; Xu et al., 2014).

In order to handle inter-domain variables, we define a new domain via a linear transform
g(x) =

∫
dx′W (x, x′)f(x′) which now contains the pseudo-points g = {g̸=u, u}. Choices for

W (x, x′) include Gaussians or wavelets. These two extensions mean that the approximation
becomes,

p(f, g|θ)
∏

b

p(yb|f, θ) ≈ p(f, g|θ)
∏

b

tb(u) = q∗(f |θ). (2.23)

Power EP is then performed using private powers αb for each data block, which is the third
generalisation mentioned above. Analytic solutions are again available (covariance matrices
now incorporate the inter-domain transform)

tb(u) = N (KfbuK−1
uuu; yb, αbDfbfb

+ σ2
yI), q(u) = N (u; KufK

−1
ff y, Kuu −Kuf K−1

ff Kfu)

where Kff = Qff + blkdiag({αbDfbfb
}Bb=1) + σ2

yI and blkdiag builds a block-diagonal matrix
from its inputs. The approximate log-marginal likelihood can also be obtained in closed-form,

logZPEP = −N

2 log(2π)− 1
2 log |Kff | −

1
2y⊺K−1

ff y +
∑

b

1− αb

2αb
log

(
I + αbDfbfb

/σ2
y

)
.

Remark 4. When αb = 1 and W (x, x′) = δ(x − x′) the structured Power EP posterior
becomes the PITC posterior and the Power EP approximate marginal likelihood becomes
the PITC marginal likelihood. Additionally, when B = N we recover FITC as discussed in
section 2.3.6.

Remark 5. When αb → 0 and W (x, x′) = δ(x− x′) the structured Power EP posterior and
approximate marginal likelihood becomes identical to the VFE approach (Titsias, 2009). (See
fig. 2.1 for more relationships.)

2.3.8 Classification

For classification, the non-Gaussian likelihood prevents an analytic solution. As such,
the iterative Power EP procedure is required to obtain the approximate posterior. The
projection step requires computation of the log-normaliser of the tilted distribution, log Z̃n =
logEq\n(f)[pα(yn|f)] = logEq\n(fn)[Φα(ynfn)]. For general α, this quantity is not available in
closed form2. However, it involves a one-dimensional expectation of a non-linear function of
a normally-distributed random variable and, therefore, can be approximated using Gauss-
Hermite quadrature. This procedure gives an approximation to the expectation, resulting in

2except for special cases, e.g. when α = 1 and Φ(x) is the probit inverse link function, Φ(x) =∫ x

−∞ N (a; 0, 1)da.
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an approximate update for the posterior mean and covariance. The approximate log-marginal
likelihood can also be obtained and used for hyperparameter optimisation. As α → 0, it
becomes the variational free-energy used in (Hensman et al., 2015) which employs quadrature
for the same purpose. These relationships are shown in fig. 2.1 which also shows that
inter-domain transformations and structured approximations have not yet been employed in
the classification setting. In our view, the inter-domain generalisation would be a sensible
one to pursue and it is mathematically and algorithmically straightforward. The structured
approximation variant is more complicated as it requires multiple non-linear likelihoods to
be handled at each step of EP. This will require further approximation such as using Monte
Carlo methods (Gelman et al., 2014b; Xu et al., 2014).

Since the proposed Power EP approach is general, an extension to other likelihood
functions is as simple as for VFE methods (Dezfouli and Bonilla, 2015). For example, the
multinomial probit likelihood can be handled in the same way as the binary case, where the
log-normaliser of the tilted distribution can be computed using a C-dimensional Gaussian
quadrature [C is the number of classes] (Seeger and Jordan, 2004) or nested EP (Riihimäki
et al., 2013).

2.3.9 Complexity

The computational complexity of all the regression and classification methods described in
this section is O(NM2) for training, and O(M2) per test point for prediction. The training
cost can be further reduced to O(M3), in a similar vein to the uncollapsed VFE approach
(Hensman et al., 2013, 2015), by employing stochastic updates of the posterior and stochastic
optimisation of the hyperparameters using minibatches of datapoints (Hernández-Lobato
and Hernández-Lobato, 2016). In particular, the Power EP update steps in section 2.3.2 are
repeated for only a small subset of training points and for only a small number of iterations.
The approximate log-marginal likelihood in eq. (2.21) is then computed using this minibatch
and optimised as if the Power EP procedure has converged. This approach results in a
computationally efficient training scheme, at the cost of returning noisy hyperparameter
gradients. In practice, we find that the noise can be handled using stochastic optimisers
such as Adam (Kingma and Ba, 2015). In summary, given these advances, the general PEP
framework is as scalable as variational inference.

2.4 Experiments

The general framework described above lays out a large space of potential inference algorithms
suggesting many exciting directions for innovation. The experiments considered in the chapter
will investigate only one aspect of this space; how do algorithms that are intermediate between
VFE (α = 0) and EP/FITC (α = 1) perform? Specifically, we will investigate how the
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performance of the inference scheme varies as a function of α and whether this depends on;
the type of problem (classification, regression or state-space modelling); the dataset (synthetic
datasets, 8 real-world regression datasets and 6 classification datasets); the performance metric
(we compare metrics that require point-estimates to those that are uncertainty sensitive). An
important by-product of the experiments is that they provide a comprehensive comparison
between the VFE and EP approaches which has been an important area of debate in its own
right.

The results presented below are compact summaries of a large number of experiments
full details of which are included in the appendix of Bui et al. (2017b).

2.4.1 Regression on synthetic datasets

In the first experiment, we investigate the performance of the proposed Power EP method
on toy regression datasets where ground truth is known. We vary α (from 0 VFE to 1
EP/FITC) and the number of pseudo-points (from 5 to 500). We use thirty datasets, each
comprising 1000 datapoints with five input dimensions and one output dimension, that were
drawn from a GP with an Automatic Relevance Determination squared exponential kernel.
A 50:50 train/test split was used. The hyperparameters and pseudo-inputs were found by
optimising the PEP energy using L-BFGS with a maximum of 2000 function evaluations.
The performances are compared using two metrics: standardised mean squared error (SMSE)
and standardised mean log loss (SMLL) as described in (Rasmussen and Williams, 2005,
page 23). The approximate negative log-marginal likelihood (NLML) for each experiment is
also computed. The mean performance using Power EP with different α values and full GP
regression is shown in fig. 2.3. The results demonstrate that as M increases, the SMLL and
SMSE of the sparse methods approach that of full GP. Power EP with α = 0.8 or α = 1 (EP)
overestimates the log-marginal likelihood when intermediate numbers of pseudo-points are
used, but the overestimation is markedly less when M = N = 500. The jump from a large
overestimation to a small overestimation in fig. 2.3 is consistent across multiple random seeds
and various pseudo-input initialisations. Importantly, however, an intermediate value of α in
the range 0.5-0.8 seems to be best for prediction on average, outperforming both EP and
VFE.

2.4.2 Regression on real-world datasets

The experiment above was replicated on 8 UCI regression datasets, each with 20 train/test
splits. We varied α between 0 and 1, and M was varied between 5 and 200. Full details of
the experiments along with extensive additional analysis are presented in the appendices.
Here we concentrate on several key aspects. First we consider pairwise comparisons between
VFE (α→ 0), Power EP with α = 0.5 and EP/FITC (α = 1) on both the SMSE and SMLL
evaluation metrics. Power EP with α = 0.5 was chosen because it is the mid-point between
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Fig. 2.3 The performance of various α values averaged over 30 trials. See text for more details

VFE and EP and because settings around this value empirically performed the best on
average across all datasets, splits, numbers of pseudo-points, and evaluation metrics.

In fig. 2.4A we plot (for each dataset, each split and each setting of M) the evaluation
scores obtained using one inference algorithm (e.g. PEP α = 0.5) against the score obtained
using another (e.g. VFE α = 0). In this way, points falling below the identity line indicate
experiments where the method on the y-axis outperformed the method on the x-axis. These
results have been collapsed by forming histograms of the difference in the performance of
the two algorithms, such that mass to the right of zero indicates the method on the y-axis
outperformed that on the x-axis. The proportion of mass on each side of the histogram, also
indicated on the plots, shows in what fraction of experiments one method returns a more
accurate result than the other. This is a useful summary statistic, linearly related to the
average rank, that we will use to unpack the results. The average rank is insensitive to the
magnitude of the performance differences and readers might worry that this might give an
overly favourable view of a method that performs the best frequently, but only by a tiny
margin, and when it fails it does so catastrophically. However, the histograms indicate that
the methods that win most frequently tend also to ‘win big’ and ‘lose small’, although EP
is a possible exception to this trend (see the outliers below the identity line on the bottom
right-hand plot).
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A clear pattern emerges from these plots. First PEP α = 0.5 is the best performing
approach on the SMSE metric, outperforming VFE 67% of the time and EP 78% of the time.
VFE is better than EP on the SMSE metric 64% of the time. Second, EP performs the best
on the SMLL metric, outperforming VFE 93% of the time and PEP α = 0.5 71% of the time.
PEP α = 0.5 outperforms VFE in terms of the SMLL metric 93% of the time.

These pairwise rank comparisons have been extended to other values of α in fig. 2.5A. Here,
each row of the figure compares one approximation with all others. Horizontal bars indicate
that the methods have equal average rank. Upward sloping bars indicate the method shown
on that row has lower average rank (better performance), and downward sloping bars indicate
higher average rank (worse performance). The plots show that PEP α = 0.5 outperforms all
other methods on the SMSE metric, except for PEP α = 0.6 which is marginally better. EP
is outperformed by all other methods, and VFE only outperforms EP on this metric. On the
other hand, EP is the clear winner on the SMLL metric, with performance monotonically
decreasing with α so that VFE is the least favourable.

The same pattern of results is seen when we simultaneously compare all of the methods,
rather than considering sets of pairwise comparisons. The average rank plots shown in
fig. 2.4B were produced by sorting the performances of the 8 different approximating methods
for each dataset, split, and number of pseudo-points M and assigning a rank. These ranks
are then averaged over all datasets and their splits, and settings of M . PEP α = 0.5 is the
best for the SMSE metric, and the two worst methods are EP and VFE. PEP α = 0.8 is the
best for the SMLL metric, with EP and PEP α = 0.6 not far behind (when EP performs
poorly it can do so with a large magnitude, explaining the discrepancy with the pairwise
ranks).

There is some variability between individual datasets, but the same general trends are
clear: For MSE, α = 0.5 is better than VFE on 6/8 datasets and EP on 8/8 datasets, whilst
VFE is better than EP on 3 datasets (the difference on the others being small). For NLL,
EP is better than alpha = 0.5 on 5/8 datasets and VFE on 7/8 datasets, whilst alpha = 0.5
is better than VFE on 8/8 datasets. Performance tends to increase for all methods as a
function of the number of pseudo-points M. The interaction between the choice of M and
the best performing inference method is often complex and variable across datasets making
it hard to give precise advice about selecting α in an M dependent way.

In summary, we make the following recommendations based on these results for GP
regression problems. For a MSE loss, we recommend using α = 0.5. For a NLL, we
recommend using EP. It is possible that more fine-grained recommendations are possible
based upon details of the dataset and the computational resources available for processing,
but further work will be needed to establish this.
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Fig. 2.5 Average ranking of various α values in the regression experiment, lower is better.
Top plots show the pairwise comparisons. Red circles denote rows being better than the
corresponding columns, and blue circles mean vice versa. Bottom plots show the ranks of all
methods when being compared together. Intermediate α values (not EP or VFE) are best on
average.

2.4.3 Binary classification

We also evaluated the Power EP method on 6 UCI classification datasets, each has 20
train/test splits. The details of the datasets are included in the appendix of Bui et al.
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(2017b).. The datasets are all roughly balanced, and the most imbalanced is pima with 500
positive and 267 negative datapoints. Again α was varied between 0 and 1, and M was
varied between 10 and 100. We adopt the experimental protocol discussed in section 2.3.9,
including (i) not waiting for Power EP to converge before making hyperparameter updates,
(ii) using minibatches of datapoints for each Power EP sweep, (iii) parallel factor updates.
The Adam optimiser was used with default hyperparameters to handle the noisy gradients
produced by these approximations (Kingma and Ba, 2015). We also implemented the VFE
approach of Hensman et al. (2015) and include this in the comparison to the PEP methods.
The VFE approach should be theoretically identical to PEP with small α, however, we note
that the results can be slightly different due to the difference in practical implementations –
optimisation for VFE vs. iterative procedure and each step only gets to see a tiny fraction of
each datapoint when α is small for PEP. Similar to the regression experiment, we compare
the methods using the pairwise ranking plots on the test error and negative log-likelihood
(NLL) evaluation metrics.

In fig. 2.6, we plot (for each dataset, each split and each setting of M) the evaluation
scores using one inference algorithm against the score obtained using another [see section 2.4.2
for a detailed explanation of the plots]. In contrast to the regression results in section 2.4.2,
there are no clear-cut winners among the methods. The test error results show that PEP
α = 0.5 is marginally better than VFE and EP, while VFE slightly edges EP out in this
metric. Similarly, all methods perform comparably on the NLL scale, except with PEP
α = 0.5 outperforming EP by a narrow margin (65% of the time vs. 35%)

We repeat the pairwise comparison above to all methods and show the results in fig. 2.7.
The plots show that there is no conclusive winner on the test error metric, and VFE, PEP
α = 0.4 and PEP α = 0.5 have a slight edge over other α values on the NLL metric. Notably,
methods corresponding to bigger α values, such as PEP α = 0.8 and EP, are outperformed
by all other methods. Similar to the regression experiment, we observe the same pattern of
results when all methods are simultaneously compared, as shown in fig. 2.7. However, the
big errorbars suggest the difference between the methods is small in both metrics.

There is some variability between individual datasets, but the general trends are clear
and consistent with the pattern noted above. For test error, PEP α = 0.5 is better than VFE
on 1/6 dataset and is better than EP on 3/6 datasets (the differences on the other datasets
are small). VFE outperforms EP on 2/6 datasets, while EP beats VFE on only 1/6 datasets.
For NLL, PEP α = 0.5 only clearly outperforms VFE on 1/6 dataset but is worse compared
to VFE on 1 dataset (the other 4 datasets have no clear winner). PEP α = 0.5 is better than
EP on 5/6 datasets and EP is better on the remaining dataset). EP is only better than VFE
on 2/6 datasets and is outperformed by VFE on the other 4/6 datasets. The finding that
PEP and VFE are slightly better than EP on the NLL metric is surprising as we expected EP
perform the best on the uncertainty sensitive metric (just as was discovered in the regression
case). The full results are included in the appendices (see figs 25, 26 and 27). Similar to the
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regression case, we observe that as M increases, the performance tends to be better for all
methods and the differences between the methods tend to become smaller, but we have not
found evidence for systematic sensitivity to the nature of the approximation.

In summary, we make the following recommendations based on these results for GP
classification problems. For a raw test error loss and for NLL, we recommend using α = 0.5
(or α = 0.4). It is possible that more fine-grained recommendations are possible based upon
details of the dataset and the computational resources available for processing, but further
work will be needed to establish this.
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Fig. 2.7 Average ranking of various α values in the classification experiment, lower is better.
Top plots show the pairwise comparisons. Red circles denote rows being better than the
corresponding columns, and blue circles mean vice versa. Bottom plots show the ranks of all
methods when being compared together. Intermediate α values (not EP or VFE) are best on
average.

2.5 Discussion

The results presented above employed (approximate) type-II maximum likelihood fitting of
the hyperparameters. This estimation method is known in some circumstances to overfit the
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data. It is therefore conceivable therefore that pseudo-point approximations, which have a
tendency to encourage under-fitting due to their limited representational capacity, could be
beneficial due to them mitigating overfitting. We do not believe that this is a strong effect in
the experiments above. For example, in the synthetic data experiments the NLML, SMSE
and SMLL obtained from fitting the unapproximated GP were similar to those obtained
using the GP from which the data were generated, indicating that overfitting is not a strong
effect (see fig. 9 in the appendix). It is true that EP and α = 0.8 over-estimates the marginal
likelihood in the synthetic data experiments, but this is a distinct effect from over-fitting
which would, for example, result in overconfident predictions on the test dataset. The SMSE
and SMLL on the training and test sets, for example, are similar which is indicative of a
well-fit model.

It is difficult to identify precisely where the best approximation methods derive their
advantages, but here we will speculate. Since the negative variational free-energy is a
lower-bound on the log-marginal likelihood, it has the enviable theoretical guarantee that
pseudo-input optimisation is always guaranteed to improve the estimate of the log marginal
likelihood and the posterior (as measured by the inclusive KL). The negative EP energy, in
contrast, is not generally a lower bound which can mean that pseudo-input optimisation drives
the solution to the point where the EP energy over-estimates the log marginal likelihood the
most, rather than to the point where the marginal likelihood and/or posterior estimate is best.
For this reason, we believe that variational methods are likely to be better than EP if the
goal is to derive accurate marginal likelihood estimates, or accurate predictive distributions,
for fixed hyperparameter settings. For hyperparameter optimisation, things are less clear-cut
since variational methods are biased away from the maximal marginal likelihood, towards
hyperparameter settings for which the posterior approximation is accurate. Often this bias is
severe and also creates local-optima Turner and Sahani (2011). So, although EP will generally
also be biased away from the maximal marginal likelihood and potentially towards areas of
over-estimation, it can still outperform variational methods. Superposed onto these factors,
is a general trend for variational methods to minimise MSE / classification error-rate and
EP methods to minimise negative log-likelihood, due to the form of their respective energies
(the variational free-energy includes the average training MSE in the regression case, for
example). Intermediate methods will blend the strengths and weaknesses of the two extremes.
It is interesting that values of α around a half are arguably the best performing on average.
Similar empirical conclusions have been made elsewhere Minka (2005); Hernández-Lobato
et al. (2016); Depeweg et al. (2016a). In this case, the α-divergence interpretation of Power
EP shows that it is minimising the Hellinger distance whose square root is a valid distance
metric. Further experiments and theoretical work are required to clarify these issues.

One of the features of the approximate generative models introduced in section 2.2.1
for regression, is that they contain input-dependent noise, unlike the original model. Many
datasets contain noise of this sort and so approximate models like FITC and PITC, or models
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in which the observation noise is explicitly modelled are arguably more appropriate than the
original unapproximated regression model (Snelson, 2007; Saul et al., 2016). Motivated by
this train of reasoning, Titsias (2009) applied the variational free-energy approximation to
the FITC generative model an approach that was later generalised by Hoang et al. (2016) to
encompass a more general class of input dependent noise, including Markov structure (Low
et al., 2015). Here the insight is that the resulting variational lower bound separates over
datapoints (Hensman et al., 2013) and is, therefore, amenable to stochastic optimisation
using minibatches, unlike the marginal likelihood. In a sense, these approaches unify the
approximate generative modelling approach, including the FITC and PITC variants, with
the variational free-energy methods. Indeed, one approach is to posit the desired form of the
optimal variational posterior, and to work backwards from this to construct the generative
model implied (Hoang et al., 2016). However, these approaches are quite different from the
one described in this chapter where FITC and PITC are shown to emerge in the context of
approximating the original unapproximated GP regression model using Power EP. Indeed, if
the goal really is to model input dependent noise, it is not at all clear that generative models
like FITC are the most sensible. For example, FITC uses a single set of hyperparameters to
describe the variation of the underlying function and the input dependent noise.

2.6 The approximate Power EP approach using tied factors

Power EP is a general and flexible framework for approximate inference and learning, and
more importantly, intermediate α values have been shown in section 2.4 to be advantageous
compared to VFE and EP. However, in the case when the optimal approximate posterior is
not analytically tractable, e.g. probit classification, this flexibility does come at a cost:

• Hyperparameter updates and posterior inference need to be interleaved during learn-
ing, that is, there is no single objective function or procedure for learning both the
hyperparameters and approximate posterior at the same time. Optimising the Power
EP energy to obtain the approximate posterior alone (instead of running the iterative
procedure) is also not straightforward, as non-standard, double-loop schemes needed to
be deployed (Heskes and Zoeter, 2002). The VFE approach, on the other hand, provides
a lower bound to the marginal likelihood, which can be optimised to concurrently learn
both the hyperparameters and the approximate posterior. There are ways to side-step
this problem, for example, not waiting for Power EP to converge before performing
an update for the hyperparameters (Hernández-Lobato and Hernández-Lobato, 2016).
However, this remains as an arguably major reason why Power EP is not used more
widely in practice when hyperparameter optimisation is required.

• The sequential update nature of Power EP is problematic for large data sets, as multiple
passes over the training data are needed for convergence. Parallel updates can be used
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instead, but are prone to numerical problems. Techniques such as damping or skipping
can be used (see e.g. Minka and Lafferty, 2002), but they are not sufficient for all cases.

• When the number of pseudo-points is large, the memory required to parameterise all
the approximate factors is high and could be out of reach. Techniques such as average
or stochastic EP (Li et al., 2015; Dehaene and Barthelmé, 2015) can significantly reduce
this memory complexity. However, though this memory limitation is not a major focus
of this chapter, it turns out that the trick employed in stochastic EP to reduce the
memory constraint can be used to sidestep other problems.

As mentioned above, stochastic EP greatly reduces the memory complexity of Power EP.
This is achived by using the same parameterisation for similar factors, enforcing an identical
contribution from each factor to the posterior. The approximate posterior in eq. (2.13)
becomes,

p∗(f |y, θ) = p(f |y, θ)p(y|θ) = p(f |θ)
∏
n

p(yn|f, θ) ≈ p(f |θ)
∏
n

t(u) = p(f |θ)tN (u) = q∗
APEP(f |θ).

Each common factor t(u) could be thought of as the average contribution from each datapoint
towards the posterior. Having described an approximate factorisation, one could proceed to
run the Power EP iterative procedure (Li et al., 2015), and then perform hyperparameter
optimisation as an outer loop as with Power EP. However, Hernández-Lobato et al. (2016)
noticed that the factor tying approximation above turns the original minimax Power EP
energy optimisation problem into a minimisation problem. In other words, in a similar fashion
to the VFE approach, the approximate Power EP energy can now be optimised using standard
optimisation techniques, to find both the approximate posterior and the hyperparameters.

We assess the performance of directly optimising the approximate Power-EP (APEP),
suggested by Hernández-Lobato et al. (2016), on the same regression and classification tasks
considered in section 2.4. We compare the performance of APEP with PEP that uses the
same α-value, and show the pairwise comparison between APEP and PEP in figs. 2.8 and 2.9
for the regression and classification cases, respectively.

In the regression case, we have shown in section 2.3.6 that the optimal approximate
posterior can be obtained for fixed hyperparameters and as a result, the collapsed Power-EP
energy can be directly optimised to obtain the hyperparameters and the pseudo-inputs. On
the other hand, when the approximate Power-EP energy with the tied factor constraint is
minimised, it is not clear what the optimal approximate posterior would be and that the
average factor would be rank-one. Therefore the approximate energy needs to be optimised
with respect to the hyperparameters, the pseudo-inputs, and the average factor (or to be
more precise, the parameters used to parameterise the mean and the covariance of the average
factor). Figure 2.8 demonstrates that optimising the collapsed Power-EP energy is superior
to using the approximate uncollapsed Power-EP energy. This trend is also consistent across
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different α values. The results here suggest that if a collapsed bound/energy is available, one
ought to use it instead of the uncollapsed version.

In the classification case, the differences between PEP and APEP are i. the form of the
approximate factors (PEP uses rank-one factors while APEP uses a full-rank average factor),
and ii. how the approximate factors are obtained (PEP uses its iterative procedure while
APEP employs direct optimisation of the energy). In contrast to the regression case, fig. 2.9
shows that there is no marked difference between APEP and PEP in both error and NLL
metrics and across different α values. This suggests that for classification tasks, one could
use the APEP method to enjoy the practical advantages it provides, without degrading the
predictive performance when compared to the exact PEP solution.
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Fig. 2.8 Comparisons between Power EP with α = 0.001, α = 0.5, and EP (Power EP α = 1), with their approximate counterpart
(APEP) using the same α value, evaluated on several regression datasets and various settings of M . Each coloured point is the result
of one split. Points that are below the diagonal line illustrate the method on the y-axis is better than the method on the x-axis. The
inset diagrams show the histograms of the difference between methods (x-value − y-value), and the counts of negative and positive
differences. Note that this indicates the pairwise ranking of the two methods. Positive differences mean the y-axis method is better
than the x-axis method and vice versa. For example, the middle, bottom plot shows PEP with α = 0.5 is on average better than
APEP with α = 0.5.
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2.7 Summary

This chapter provided a new unifying framework for GP pseudo-point approximations
based on Power EP that subsumes many previous approaches including FITC, PITC, DTC,
Titsias’s VFE method, Qi et al’s EP method, and inter-domain variants. It provided a
clean computational perspective on the seminal work of Csató and Opper that related
FITC to EP, before extending their analysis significantly to include a closed form Power EP
marginal likelihood approximation for regression, connections to PITC, and further results
on classification and GPSSMs. The new framework was used to devise new algorithms for
GP regression and GP classification. Extensive experiments indicate that intermediate values
of Power EP with the power parameter set to α = 0.5 often outperform the state-of-the-art
EP and VFE approaches. The new framework suggests many interesting directions for future
work in this area that we have not explored, for example, extensions to online inference,
combinations with special structured matrices (e.g. circulant and Kronecker structure),
Bayesian hyperparameter learning, and applications to richer models. The current work
has only scratched the surface, but we believe that the new framework will form a useful
theoretical foundation for the next generation of GP approximation schemes.



Chapter 3

Sparse approximations for
Gaussian process state space and
latent variable models

3.1 Introduction

Unsupervised learning of underlying latent parameters and variables governing observed data
is central to many machine learning settings. This type of learning typically involves building
a generative probabilistic model for observed data and performing learning and inference
over the unobserved or latent variables. Such a procedure allows us to define a density model
for the observations and from a probabilistic perspective, learning in this model is equivalent
to finding a model that maximises the probability of the data. Importantly, such a model of
the data enables us to handle tasks in the data space such as denoising noisy observations,
synthesising new data or imputing missing data, or to compress high-dimensional data into
low-dimensional latent factors for summarisation, analysis and visualisation purposes (for
example identifying style and content latent factors).

Inference in this class of models is ill-posed, as there are potentially many ways to explain
all the patterns and ambiguity in the observed data. As such, a good probabilistic model
needs to be flexible to allow a rich generative power to explain the data.1 Importantly, a
good learning and inference algorithm needs to produce accurate predictions of unseen data
with reliable and calibrated uncertainty estimates. Unfortunately, the gold standard exact
Bayesian learning and inference paradigm is analytically and computationally intractable in
many interesting and complicated generative models, forcing us to consider approximation
techniques. This chapter considers a class of generative models based on continuous latent
variables, in which the relationship between the latent and the observed variables, or between

1However, at the same time it cannot be too flexible since we then end up with delta functions at each
observed sample and the model will not be able to generalise to unseen data
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the latent variables themselves are flexibly modelled by a Gaussian process, and derives a
practical and tractable deterministic approximate Bayesian inference and learning framework
for these models.

The first part of this chapter reviews the Gaussian process state space model (GPSSM)
to model time-series data and an existing variational free-energy (VFE) approximation to
learning and inference. This is followed by a derivation of a novel approximation framework
based on Power Expectation Propagation (Power EP), and an approximation to this framework
allowing a tractable implementation and deployment in practice. A special case of this model
class to non-time-series data, namely the Gaussian process latent variable model (GPLVM),
will be discussed. Several applications including non-linear system identification, and structure
discovery and visualisation for neuroscience data are used as evaluation testbeds.

3.2 The Gaussian process state space model

Complex non-linear dynamics arise in many fields of science and engineering, and are abundant
in many machine learning tasks such as sequence modelling, control, and quantitative finance.
The ability to model and learn complex time series dynamics directly from observations
is a key problem in many disciplines. A key difference to other types of data, and also a
challenge, is that observed data or measurements are potentially explicitly dependent on past
observations. While this dependency can be implicitly encoded by simpler techniques like
regression2, building an explicit model to reflect our belief about this dependency is arguably
a better choice.

There are a plethora of existing approaches to time series modelling, notably autoregressive
models and state space models. Autoregressive models effectively are regression models,
taking past observations as inputs to predict the current observations. While these models are
simple and often the first port of call for many practitioners, they suffer from the problem of
mixing input and measurement noises. State space models are probabilistic models describing
the evolution of a state space or latent variables through time, and how the measurements
at each time step are related to these variables. These latter models are potentially more
flexible, as the learnt latent space could be viewed as a compressed state of high-dimensional
observations, or as unobserved factors that potentially govern the underlying dynamics.
Importantly, this class of models separates the measurement noise from the potentially noisy
underlying dynamics, unlike autoregressive models in which input noise is not typically
explicitly model (see Frigola, 2015, sec. 2.4). This flexibility, however, does come at a cost of
less tractable inference and learning, especially for non-linear dynamics. In contrast, standard
regression techniques can be readily deployed for inference and learning in the autoregressive
variants.

2for example: in GP regression, the observations are correlated when the latent function is marginalised
out.
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We are interested in a state-space model subclass in which latent variables are continuous
and the transition between these variables is non-linear. Due to the non-linearity in the
dynamics, inference and learning, which involve finding the state transition as well as the
latent states themselves, are difficult. The presence of transition and measurement noise,
and a typically small number of measurements in practice make the inference task even more
challenging. This model subclass can be compactly represented as follows,

p(x0) = N (x0; µ0, Σ0), (3.1)
p(xt|f, xt−1) = N (xt; f(xt−1), Qx), for t = 1 : T, (3.2)

p(yt|xt) = N (yt; Uxt, Ry), for t = 1 : T, (3.3)

where the dynamical noise is assumed Gaussian and the measurement or emission model is
assumed to be linear and Gaussian, x and y are the latent variables and the measurements
respectively, f is a continuous non-linear transition function, and T is the number of
measurement steps. The idea of using non-linear function f to model the dynamic is not new,
for example, classic work by Ito and Xiong (2000); Kushner and Budhiraja (2000) derived
approximations for filtering with generic non-linear dynamics, Ghahramani and Roweis (1998)
employed an RBF network, and Valpola and Karhunen (2002) used a (Bayesian) neural
network.

In this chapter, we assume the non-linear transition function f is a draw from a Gaussian
process, or in other words, we place a flexible nonparametric Gaussian process prior over this
function, p(f) = GP(m(.), k(., .)). We refer to the resulting model as the Gaussian process
state-space model (GPSSM). This model belongs to a plethora of closely related dynamical
systems which describe how the state and emission variables evolve using Gaussian processes
(Frigola, 2015, Chapter 2). For simplicity, we assume a linear Gaussian emission model,
however, the inference techniques described in this chapter can be applied for non-Gaussian
and non-linear likelihoods. In fact, a variant that uses a non-linear GP emission model is
used later in the experiment.

The joint probablity of all variables and observations involved can be written as follows,

p(y1:T , x0:T , f |θ) = p(x0)p(f |θ)
T∏

t=1
p(xt|f, xt−1, θ)p(yt|xt, θ), (3.4)

where θ includes the kernel hyperparameters, the transition noise, and the emission parameters.
These hyperparameters can be found by performing model selection using the log marginal
likelihood:

L(θ) = log p(y1:T |θ) = log
∫

dfdx0:T p(y1:T , x0:T , f |θ). (3.5)
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Unfortunately, the above marginalisation is analytically intractable due to the non-linearity
in the model. An intertwined and equally difficult problem is to obtain the posterior over the
latent transition and state variables,

p(x0:T , f |y1:T , , θ) = p(y1:T , x0:T , f |θ)
p(y1:T |θ) . (3.6)

The difficult task of inferring the latent transition function f and the latent variables x
and performing model selection as explained above has been previously studied and is an
active research area. Wang et al. (2005) obtains the maximum-a-posterior solutions for both
f and x and, as a consequence, does not present a proper treatment of the uncertainty in
the model. Frigola et al. (2013) attempted to remedy this issue in a fully Bayesian scheme
based on particle MCMC, at the cost of added computational complexity. More recently,
Frigola et al. (2014) introduced an inference scheme mixing variational method and sequential
Monte Carlo, the core of which is based on earlier work on sparse GP regression by Titsias
(2009). A fully variational treatment has then been studied in McHutchon (2014), which was
further extended by using recent developments in neural network based recognition models
by Eleftheriadis et al. (2017).

In this section, we first review the variational free-energy approaches by Frigola et al.
(2014); McHutchon (2014), and then present a more general approximate inference scheme
based on Power Expectation Propagation (Power EP), capable of learning both the transition
function f and latent variables x. EP has been considered for learning and inference for
GPSSMs. For example, the inference approach introduced in Deisenroth and Mohamed
(2012) assumes a known transition dynamic f , and only infers an approximate posterior
over x. This EP scheme was later used as an E-step in an EM approach to learning both
f and x (McHutchon, 2014). Crucially, the lack of an additional approximation for the
latent function f in this EP scheme results in a prohibitive computational complexity of
O(T 3). The approach proposed in this section, in contrast, employs Power EP to provide
approximate Bayesian estimates for both f and x simultaneously in a computationally and
analytically tractable manner. Importantly, Power EP offers a flexible approximate inference
framework which has EP and structured variational inference (VI) as special cases. This
framework generalises the Power EP framework for regression and classification discussed
in the last chapter and can be extended to other non-GP based state space models. We
attempt to describe the relationship of the methods described in this chapter by the poster
approximation and the approximate inference scheme that each method uses, in table 3.1.

3.3 The VFE approach

The difficulty of exact inference and learning described above can be sidestepped by using
deterministic approximations. One example is the variational free energy method, which turns
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Table 3.1 Different approximations discussed in this chapter, categorised by the approximate posterior and the inference method used.
In all cases (except MAP), q(u) is assumed Gaussian, q(u) = N (u; m, S).

Sec. Inf. method q(x0:T ) Notes and references

— MAP MAP Wang et al. (2005)

— VFE + SMC sample-based sandwiching VFE updates for q(u)
and SMC for q(x0:T ), Frigola et al. (2014)

3.3 VFE Gaussian, (block)-diagonal covariance q(u) collapsable
3.4 Power EP Gaussian, (block)-diagonal covariance factors can be tied, α→ 0 gives VFE

3.3 VFE Gaussian, tri-(block)-diagonal precision
q(u) collapsable, McHutchon (2014),

Eleftheriadis et al. (2017) used inf. networks
to parameterise q(x0:T )

3.4 Power EP Gaussian, tri-(block)-diagonal precision α→ 0 gives VFE

3.10.1 VFE and Power EP q(x0:T |f) = q(x0)∏T
t=1 p(xt|f, xt−1) inspired by Salimbeni and Deisenroth (2017)

and section 4.4
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the intractable inference problem into a simpler optimisation problem (Frigola et al., 2014;
McHutchon, 2014). In the context of the GPSSMs, this approach introduces a variational
approximation for the latent function f and the latent variables x0:T , q(f, x0:T ), to lower-
bound the log marginal likelihood in eq. (3.5) using Jensen’s inequality as follows,

L(θ) = log
∫

dfdx0:T p(y1:T , x0:T , f |θ) (3.7)

= log
∫

dfdx0:T
q(f, x0:T )
q(f, x0:T )p(y1:T , x0:T , f |θ) (3.8)

≥
∫

dfdx0:T q(f, x0:T ) log p(y1:T , x0:T , f |θ)
q(f, x0:T ) =: Fvfe(q(.), θ), (3.9)

where F (q(.), θ) is the negative variational free-energy or the variational lower bound to the
marginal likelihood. The gap between the exact marginal likelihood and this bound can
be shown as the KL-divergence from the exact posterior to the variational approximation,
KL(q(f, x0:T )||p(f, x0:T |y, θ)). This gap becomes zero and the inequality above becomes
equality when q(f, x0:T ) = p(f, x0:T |y, θ); however, this is intractable. Instead, a variational
approximation is chosen from a simpler and restricted family and the resulting variational
free-energy is maximised with respect to this approximation so that it gets closer to the
intractable posterior (as the KL divergence is minimised). Most importantly, the variational
distribution must be chosen to be rich and expressive to approximate the ground truth well,
and to allow tractable computations. Note that, as the variational free energy approximates
the log marginal likelihood, it can be optimised to obtain the model hyperparameters θ.

Inspired by the form of the structured variational approximation used in sparse approx-
imations for GP regression and GPLVMs by Titsias (2009); Titsias and Lawrence (2010),
Frigola et al. (2014) employed the following variational approximation,

q(f, x0:T ) = p(f̸=u|u)q(u)q(x0:T ). (3.10)

This assumes a mean-field approximation between x0:T and f , and mirrors the form of the
prior on the latent function f ,

p(f) = p(f̸=u|u)p(u). (3.11)
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This elegantly allows a cancellation of p(f̸=u|u), leading to a tractable negative variational
free-energy as follows,

Fvfe(.) =
∫

dfdx0:T q(f, x0:T ) log p(y1:T |x0:T , f)p(x0:T , f)
q(f, x0:T ) (3.12)

=
∫

dfdx0:T q(f, x0:T ) log p(y1:T |x1:T )p(x1:T |f, x0)XXXXXp(f̸=u|u)p(u)p(x0)
XXXXXp(f̸=u|u)q(u)q(x0:T ) (3.13)

= −KL(q(u)||p(u)) +H(q(x0:T )) +
∫

dx0q(x0) log p(x0)

+
T∑

t=1

∫
dxtq(xt) log p(yt|xt) +

T∑
t=1

∫
dxt−1,tdfq(xt−1,t)q(f) log p(xt|f, xt−1),

(3.14)

where H(q) is the entropy of the density q, and note that we have used the model description
in eqs. (3.2) and (3.3) to decompose parts of the energy into sums across time steps.

3.3.1 Obtaining an optimal q(u)

In the derivations above, we have not made any assumptions about the form or family of
q(u) and q(x0:T ). In fact, it could be shown that the optimal form for q(u) is a Gaussian
density whose parameters depend on q(x0:T ). In detail, taking the functional derivative of
Fvfe(.) w.r.t. q(u) gives us,

δFvfe(.)
δq(u) = − log q(u)

p(u) − 1 +
T∑

t=1

∫
dxt−1,tdfq(xt−1,t)p(f̸=u|u) log p(xt|f(xt−1))︸ ︷︷ ︸

Gt

. (3.15)

Setting eq. (3.15) to zero and making sure that q(u) is normalised results in the following
optimal variational distribution,

q∗(u) = p(u) exp(∑T
t=1 Gt)

Zu
, where Zu =

∫
dup(u) exp

(
T∑

t=1
Gt

)
. (3.16)

The integral over the entire function f in Gt can be simplified to only over a single function
value, f(xt−1), since the transition log likelihood, p(xt|f(xt−1)), only depends on this term.
The log of this likelihood term, log p(xt|f(xt−1)), and the conditional distribution p(f(xt−1)|u)
can be expanded as follows,

log p(xt|f(xt−1)) = logN (xt; f(xt−1), Q) (3.17)

= −D

2 log(2π)− 1
2 log |Q| − 1

2(xt − f(xt−1))⊺Q−1(xt − f(xt−1)), (3.18)

p(f(xt−1)|u) = N (f(xt−1); Atu; Bt), (3.19)
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where At = KftuK−1
uu, Bt = Kftft −KftuK−1

uuKuft , Kftu is the covariance matrix between
the function values at the previous latent state xt−1 and the pseudo-inputs z, and Kftft
the covariance between the function value at xt−1 and itself. As a result, f(xt−1) can be
analytically integrated out as follows,

Gt =
∫

dxt−1,tdfq(xt−1,t)p(f̸=u|u) log p(xt|f(xt−1)) (3.20)

=
∫

dxt−1,tq(xt−1,t)
[∫

df(xt−1)p(f(xt−1)|u) log p(xt|f(xt−1))
]

(3.21)

=
∫

dxt−1,tq(xt−1,t)
[
logN (xt; Atu, Q)− 1

2 tr(Q−1Bt)
]

(3.22)

= −D

2 log(2π)− 1
2 log |Q| − 1

2 tr
(
Q−1

[
⟨Bt⟩q(xt−1) + ⟨x⊺

t xt⟩q(xt)
])

− 1
2u⊺⟨A⊺

t Q−1At⟩q(xt−1)u + u⊺⟨A⊺
t Q−1xt⟩q(xt−1,t). (3.23)

As Gt forms a quadratic in u, substituting this in the optimal variational distribution q(u)
above gives a closed form Gaussian distribution q∗(u) = N (u; m∗, S∗), where,

S−1
∗ = K−1

uu +
T∑

t=1
⟨A⊺

t Q−1At⟩q(xt−1), (3.24)

S−1
∗ m∗ =

T∑
t=1
⟨A⊺

t Q−1xt⟩q(xt−1,t) (3.25)

Note that the parameters of this optimal variational distribution depend on the variational
approximation q(x1:T ), or more precisely, on the marginal approximations at each time step
q(xt) and the pair-wise marginal approximations at consecutive time steps q(xt−1,t). The
analytic tractability now depends on being able to compute the expectations in eqs. (3.24)
and (3.25). These expectations are available in closed-form when the approximation for the
hidden variables is Gaussian and the covariance function used is an exponentiated quadratic
kernel, linear kernel, or a linear mixture of these. Detailed derivation of these expectations
can be found in the appendix of McHutchon (2014). For covariance functions that do not
admit tractable expectation computation, approximations such as simple Monte Carlo can
be used. Additionally, the log of the normalising constant Zu in eq. (3.16) can also be obtain
analytically,

logZu = −DT

2 log(2π)− T

2 log |Q| − 1
2 tr

(
Q−1

T∑
t=1

[
⟨Bt⟩q(xt−1) + ⟨x⊺

t xt⟩q(xt)
])

− 1
2 log |Kuu|+

1
2 log |S∗|+

1
2m⊺

∗S−1
∗ m∗. (3.26)
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3.3.2 Choosing a variational family for q(x0:T )

Having shown that the optimal variational distribution q(u) takes a Gaussian form, we now
turn our attention to finding an optimal form for q(x0:T ). Following a similar procedure as
for q(u), we can find the functional derivative of the free-energy w.r.t. q(x0:T ) as follows,

δFvfe(.)
δq(x0:T ) = −1− log q(x0:T ) +

∫
dfq(f) log p(y1:T |x1:T )p(x1:T |f, x0)p(u)p(x0)

q(u) (3.27)

= C− log q(x0:T ) + log p(x0) + log p(yt|xt) +
T∑

t=1

∫
dfq(f) log p(xt|f, xt−1),

(3.28)

where C is a constant that can be folded into the normaliser of q(x0:T ). The integral in the
last term above can be computed in closed-form,∫

dfq(f) log p(xt|f, xt−1) =
∫

df(xt−1)dup(f(xt−1)|u)q(u) log p(xt|f, xt−1) (3.29)

= logN (xt; Atm, Q)− 1
2 tr(Q−1[Bt + AtSA⊺

t ]), (3.30)

where m and S are the mean and covariane of q(u). Substituting the above result into
the gradient and setting this gradient to zero lead to the following optimal variational
approximation for the latent variables,

q∗(x0:T ) ∝ p(x0)
T∏

t=1

[
p(yt|xt)N (xt; Atm, Q) exp(−1

2 tr(Q−1[Bt + AtSA⊺
t ]))

]
. (3.31)

Note that At and Bt depends on xt−1 and as a result, the optimal form above possesses a
Markovian structure despite a non-trivial structure in the exact and intractable posterior.
However, since At and Bt have non-linear dependencies on xt−1, this optimal approximate
posterior is also not analytically tractable. Approximation techniques can be used to sidestep
this difficulty, for example: Frigola et al. (2014) used Sequential Monte Carlo (SMC) to obtain
samples from this distribution, and McHutchon (2014) employed a deterministic Gauss-
Markov structure q(x0:T ) = N (x0:T ; µ, Σ) where Σ−1 is tridiagonal or block-tridiagonal. In
this chapter, we experiment with the Markovian Gaussian approximation of McHutchon
(2014), and a mean-field Gaussian approximation where Σ is diagonal or block-diagonal. Note
that the computation of the variational free-energy requires several expectations w.r.t. the
marginal densities over the latent variables, and the pair-wise densities at successive time
steps, and a computation of the entropy of q(x0:T ). We will discuss how the (block-)diagonal
and structured Gassian approximations allow quick access to these densities and also permit
efficient entropy computation.
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In addition, the optimal form for q(x0:T ) above depends on the parameters of the
variational distribution over the pseudo-datapoints, q(u) = N (u; m, S). We have shown
earlier that the optimal q(u) can also be obtained and depends on q(x0:T ). This strong
coupling suggests an alternating optimisation approach: optimise q(u) while keeping q(x0:T )
fixed, then optimise q(x0:T ) while keeping q(u) fixed, and repeat. This strategy was employed
in Frigola et al. (2014), in which SMC sampling steps for q(x0:T ) and optimal update steps
for q(u) based on eqs. (3.24) and (3.25) are interleaved. Instead, we follow McHutchon (2014)
and explicitly parameterise a Gaussian variational approximation q(x0:T ), and consider two
ways to deal with q(u):

• substitute the optimal q(u) back to the variational free-energy and hence remove an
explicit dependency on q(u), the free-energy is then optimsed w.r.t the parameters of
q(x0:T ), and

• explicitly parameterise the mean and covariance of q(u) in addition to that of q(x0:T )
and optimise both distributions jointly using the variational free-energy.

We will refer to these two strategies as collapsed and uncollapsed, respectively.

3.3.3 Collapsed and uncollapsed variational free-energies

The uncollapsed variational free-energy is the original variational free-energy in eq. (3.14),
as approximate variational distributions over the latent states and the pseudo-points are
explicitly parameterised. For completeness, the free-energy can be written in closed-form as
follows,

Fvfe(.) = −KL(q(u)||p(u)) +H(q(x0:T )) + ⟨log p(x0)⟩q(x0) +
T∑

t=1
(Fvfe, dyn, t + Fvfe, emi, t),
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where

Fvfe, dyn, t =
∫

dxt−1,tdfq(xt−1,t)q(f) log p(xt|f, xt−1)

= −1
2 log[(2π)Dx |Q|]− 1

2 tr
(
Q−1 [m⊺

xt
mxt + Sxt

])
+ m⊺

u⟨A
⊺
t Q−1xt⟩q(xt−1:t)

− 1
2 tr

(
Q−1

[
⟨Bt⟩q(xt−1) + ⟨At[Su + mum⊺

u]A⊺
t ⟩q(xt−1)

])
, (3.32)

Fvfe, emi, t =
∫

dxtq(xt) log p(yt|xt)

= −1
2 log[(2π)Dy |Ry|]−

1
2y⊺

t R−1
y yt + ytR−1

y Umxt

− 1
2 tr

(
U⊺R−1

y U[Sxt + mxtm⊺
xt

]
)

, (3.33)

KL(q(u)||p(u)) = KL(N (u; mu, Su)||N (u; 0, Kuu))

= 1
2
[
tr(K−1

uuSu) + muK−1
uum⊺

u −M + log |Kuu| − log |Su|
]

, (3.34)

⟨log p(x0)⟩q(x0) = −1
2 log[(2π)Dx |Σ0|]−

1
2 tr(Σ0[Sx0 + mx0m⊺

x0 ]). (3.35)

While this requires an optimisation over more variational parameters, the objective is
amenable to stochastic optimisation. In particular, the free-energy involves two sums over the
measurement steps and as a result a noisy unbiased estimate of the energy can be obtained
using a random subsequence of the entire training sequence as follows,

Fvfe(.) ≈ −KL(q(u)||p(u)) +H(q(x0:T )) + ⟨log p(x0)⟩q(x0) + T

B

B∑
b=1

(Fvfe, dyn, b + Fvfe, emi, b),

where B is the length of the subsequence. This is computationally useful when the number
of training steps is large, and an efficient computation of the entropy H(q(x0:T )) is available.

When the variational free-energy is optimally maximised w.r.t. q(u), we only need to
maintain a variational approximation over the latent variables q(x0:T ). In detail, substituting
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the optimal q(u) in eq. (3.16) into eq. (3.14) leads to,

Fvfe(.) = −
∫

duq(u) log p(u) exp(∑T
t=1 Gt)

Zup(u) +H(q(x0:T )) +
∫

dx0q(x0) log p(x0)

+
T∑

t=1

∫
dxtq(xt) log p(yt|xt) +

T∑
t=1

∫
dxt−1,tdfq(xt−1,t)q(f) log p(xt|f, xt−1)

= −
∫

duq(u) log
HHHp(u)
H
HHp(u) + logZu −

H
HHH

HHHH

T∑
t=1

∫
duq(u)Gt +H(q(x0:T )) +

∫
dx0q(x0) log p(x0)

+
T∑

t=1

∫
dxtq(xt) log p(yt|xt) +

hhhhhhhhhhhhhhhhhhhhhh

T∑
t=1

∫
dxt−1,tdfq(xt−1,t)q(f) log p(xt|f, xt−1)

= logZu +H(q(x0:T )) +
∫

dx0q(x0) log p(x0) +
T∑

t=1

∫
dxtq(xt) log p(yt|xt). (3.36)

Note that a closed-form logZu is available in eq. (3.26). The collapsed variational free-energy
above is, however, not amenable to stochastic optimisation, as logZu has a non-trivial
dependency on the latent variables at all measurement steps.

3.3.4 Diagonal and Markovian Gaussian parameterisations for q(x0:T )

The simplest and perhaps most inaccurate approximation for q(x0:T ) is a block-diagonal
Gaussian, which assumes the latent variables across time steps are not correlated a posteriori,
q(x0:T ) = ∏

t q(xt) = ∏
tN (xt; µt, Σt). Let Dx be the dimensions of the latent states,

the number of parameters needed for this block-diagonal approximation is (T + 1)Dx and
TDx(Dx + 1)/2 for the mean and covariance respectively.3 This approximation is less
damaging when the observations are more informative about the latent variables, or when
the ground truth posterior over the latent variables is not strongly correlated. However,
when the hyperparameters are concurrently optimised, this property means the variational
objective will potentially bias the hyperparameters towards a region in which an uncorrelated
approximate posterior is a good approximation, for example by learning a simpler latent
function or higher noise (Turner and Sahani, 2011).

An alternative to improve over this block-diagonal approximation is to use a fully-
correlated Gaussian approximation, q(x0:T ) = N (x0:T ; µ, Σ). However, this is computationally
expensive for long sequences due to the computation of the entropy of q(x0:T ), a (T + 1)Dx-
dimensional Gaussian density. Additionally, this requires a number of parameters of order
O(T 2), specfically (T + 1)Dx and (T + 1)Dx((T + 1)Dx + 1)/2 for the mean and covariance
respectively.

3The number of parameters for the covariance is further reduced to (T + 1)Dx when the approximation is
fully diagonal.
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Observing that the optimal q(x0:T ) possesses a Markovian structure, we attempt to incorpo-
rate this structure into the Gaussian approximation. The resulting structured Gauss-Markov
approximation offers a nice trade-off between approximation quality and computational com-
plexity: i. it explicitly retains correlations across measurement steps, and ii. it allows quick
computation of the marginal and pair-wise densities as well as the entropy term. In detail,
the Gauss-Markov property allows the following decomposision of the joint approximation,

q(x0:T ) = q(x0)
T∏

t=1
q̄t(xt−1, xt) = N (x0; µ0, Σ0)

T∏
t=1
N
([xt−1

xt

]
;
[
µt

t−1
µt

t

]
,

[
Σt

t−1 Σt
t−1,t

Σt
t,t−1 Σt

t

])
,

which enforces conditional independence between non-adjacent hidden variables given all other
hidden variables in between. Due to this property, the precision matrix of this variational
approximation is tri-block-diagonal. Note that q̄t(xt−1, xt) denotes a factor that involves
two variables, xt and xt−1, and is not the pairwise marginal of the variational distribution,
q(xt−1, xt). The latter quantity, q(xt−1, xt), can be computed as follows,

q(xt−1, xt) = q̄t−1(xt−1)q̄t(xt−1, xt)q̄t+1(xt). (3.37)

Similarly, the marginal distribution, q(xt), can also be efficiently computed,

q(xt) = q̄t−1(xt)q̄t(xt). (3.38)

These formulations mean that the computation of all pairwise and single-site marginals over
successive time steps can be done in one sweep over the training sequence, i.e. linear in T . In
fact, this parameterisation allows the marginal computation based on local parameters, which
means computing the pairwise and single-site marginals on any subsequence can be done in
time linear in the subsequence length, and does not require a loop over the entire training
sequence. This result is important when subsequence based stochastic learning is required.
This parameteristaion of the Gauss-Markov structure has been used by McHutchon (2014),
and is strictly more general than the autoregressive structure employed by Eleftheriadis et al.
(2017).4

4In addition, the autoregressive structure in Eleftheriadis et al. (2017), q(x0:T ) = q(x0)
∏T

t=1 q(xt|xt−1)
does require a loop over the entire training sequence to compute the marginal q(xT ), and therefore is arguably
unsuited for subsequence based stochastic training.
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The entropy term H(q(x0:T )) can also be found in a closed-form that involves only the
aforementioned marginal and pair-wise densities,

H(q(x0:T )) = −
∫

dx0:T q(x0:T ) log q(x0:T ) (3.39)

= −
∫

dx0:T q(x0:T ) log
[
q(x0)

T∏
t=1

q(xt, xt−1)
q(xt−1)

]
(3.40)

= (T + 1)Dx

2 log(2πe) + 1
2

T∑
t=1

log |Σt−1:t| −
1
2

T −1∑
t=1

log |Σt|. (3.41)

The number of parameters used for this parameterisation is only linear in the sequence length
T , specifically (2T +1)Dx for the mean parameters, Dx(Dx +1)/2 for the covariance of q(x0),
and TDx(2Dx + 1) for the covariance of {q̄(xt−1, xt)}Tt=1. This requirement is significantly
smaller than that of the fully correlated parameterisation above, and is about four times as
many parameters as the mean-field parameterisation.

Next, we discuss a more general deterministic approximate inference framework based on
Power EP, and additional approximations required for tractable inference and learning in GP
state space models.

3.4 The Power EP approach

It has been shown in the previous chapter that the variational free-energy approach for
regression and classification is a special case of a general inference and learning framework
based on Power EP. In a similar fashion, we present a unifying framework for learning and
inference in GPSSMs based on Power EP. Similar to the previous chapter, we will view Power
EP as approximating the joint density, which provides both the approximate posterior and
the approximate marginal likelihood. In particular, the joint density of the latent variables,
latent dynamics and the observed measurements is

p(y1:T , x0:T , f |θ) = p(x0)p(f |θ)
T∏

t=1
p(xt|f, xt−1, θ)p(yt|xt, θ), (3.42)

and the approximate joint density takes the following form,

q(x0:T , f) = p(x0)p(f |θ)
T∏

t=1
[ϕt(xt−1, xt)ht(u)][γt(xt)], (3.43)

where the product ϕt(xt−1, xt)ht(u) is introduced to approximate the transition factor
p(xt|f, xt−1, θ), and similarly γt(xt) for the emission p(yt|xt, θ). This approximation can be
illustrated using the factor graphs in fig. 3.1(B), which schematically shows how Power EP
operates at the local factor level by breaking up the difficult factors into simpler factors that
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we can approximate. Note that the h factors only depend on a small number of function
values u.

A B

C D

Fig. 3.1 A: a factor graph of the Gaussian process state space model. Note that while
there are many factor graphs that can be used to show the same model, our approximation
is based on this representation. B: a factor graph showing approximate factors and the
variables that each factor involves. This factor graph assumes a correlated structure over the
hidden variables. C: another approximation to the original factor graph, but this assumes a
mean-field structure over the hidden variables. D: a factor graph showing how factors in C
are tied, factors coloured using the same colour are identical. Best viewed in colour.

The approximate posterior above can be rewritten by observing that factors that touch a
common variable can be grouped,

q(x0:T , f) = p(f |θ)
[

T∏
t=1

ht(u)
] [

p(x0)ϕ0(x0)
T∏

t=1
ϕt(xt−1, xt)γt(xt)

]
(3.44)

= p(f̸=u|u, θ)
[
p(u)

T∏
t=1

ht(u)
] [

p(x0)ϕ0(x0)
T∏

t=1
ϕt(xt−1, xt)γt(xt)

]
. (3.45)

The resulting form above resembles the global approximate posterior used for the VFE
approach in eq. (3.10), except that here we have explicitly assume a Markovian structure for
the latent variables. We can further impose a mean-field structure for the hidden variables,
by assuming that ϕt(xt−1, xt) = λt(xt)βt(xt−1), as illustrated in fig. 3.1(C). The resulting
global approximation posterior is identical to that used in the mean-field (diagonal Gaussian)
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VFE approach discussed in the last section. As the correlated structure in eq. (3.45) is more
general, we will use this form in the next sections.5

Having described the form of the approximate joint density, we will next show how the
approximate local factors are found using the Power EP procedure. Similar to the regression
and classification cases in chapter 2, the Power EP procedure iterative refines the approximate
factors by finding the cavity distribution, matching the approximate posterior’s moments to
that of the tilted distribution and updating the factors, until it satisfies some convergence
condition. However, unlike the regression and classification cases, the scheduling of the
updates in the state-space model could affect the convergence. We have only experimented
with updating factors in a chronological order, i.e. sequentially from time step 0 to time step
T . This schedule could slow down convergence when the time series is long. Alternative
update schedules, such as parallel updates or interleaved forward and backward updates,
are left as future work. In the experiments included in section 3.8, the scheduling is not
an issue as we do not run the Power-EP iterative procedure and instead, the approximate
Power-EP energy is directly optimised. Note that in what follows, the approximate factors
are assumed to be Gaussian, which allows analytic computation; however, this assumption
could be relaxed.

3.4.1 Dealing with the transition factor p(xt|f, xt−1)

The goal is to update the factors ϕt(xt−1, xt) and ht(u) such that they approximate the
contribution of p(xt−1|f, xt) towards the true posterior. We first compute the cavity distri-
butions by removing a fraction of the approximate factors, ϕt(xt−1, xt) and ht(u), from the
posterior as follows,

q\t(xt−1, xt) = ϕt−1(xt−1)ϕ1−α
t (xt−1, xt)ϕt+1(xt), (3.46)

q\t(f) = p(f̸=u|u, θ)q\t(u) = p(f̸=u|u, θ)p(u)ht(u)1−α
∏
i ̸=t

hi(u), (3.47)

where ϕt−1(xt−1) and ϕt+1(xt) are the marginals of ϕt−1(xt−2, xt−1) and ϕt+1(xt, xt+1),
respectively. The surrogate posterior or the tilted distribution is formed by multiplying a
fraction of the transition factor with the cavity distribution:

q̃(f, xt−1, xt) = q\t(xt−1, xt)q\t(f)pα(xt|f, xt−1). (3.48)

The central step of Power EP is the projection step, that is to find a new approximate
posterior by minimising the unnormalised KL divergence, KL(q̃(f, xt−1, xt)||q(f, xt−1, xt)).
This minimisation problem is equivalent to finding q(f, xt−1, xt) whose zeroth, first and
second order moments match that of the tilted distribution q̃(f, xt−1, xt). Similar to the

5The mean-field results can be easily obtained from the results for the structured case by setting the
off-diagonal components to zero.
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regression and classification cases, this moment matching step is achieved by computing the
log-normaliser of the tilted distribution, log Z̃ = log Eq̃(f,xt−1,xt)[1] and its gradients w.r.t. the
cavity mean and covariance, and performing the following updates,

mu = m\t
u + V\t

u
d log Z̃

dm\t
u

; Vu = V\t
u −V\t

u

[
d log Z̃

m\t
u

(
d log Z̃

m\t
u

)⊺

− 2d log Z̃

V\t
u

]
V\t

u .

The updates for {xt−1, xt} take identical forms. In general, the quantity log Z̃ and its
gradients are not available in closed-form, as the normaliser of the tilted distribution is an
intergrated product of a Gaussian with a non-Gaussian distribution as illustrated in fig. 3.2.
In more detail,

Z̃ =
∫

dxt−1dxtdfq\t(xt−1, xt)q\t(f)pα(xt|f, xt−1)

=
∫

dxt−1dxtdfN (xt−1:t; m\t
xt−1:t , V\t

xt−1:t)p(f̸=u|u)q\t(u)Nα(xt; f(xt−1), Q). (3.49)

The strategy we will follow next is to exactly integrate out f and xt, and then approximately
integrate out xt−1. In detail, we can first integrate out all latent function values, except
f(xt−1), as follows,

qa(f(xt−1)) =
∫

df̸=f(xt−1)p(f̸=u|u)q\t(u) (3.50)

=
∫

duN (f(xt−1); Atu, Bt)q\t(u) (3.51)

= N (f(xt−1); Atm\t
u︸ ︷︷ ︸

ma

, Bt + AtS\t
u A⊺

t︸ ︷︷ ︸
va

), (3.52)

where At = KftuK−1
uu, Bt = Kftft − KftuK−1

uuKuft . Note that this distribution is the
prediction of function value f(xt−1) at an input xt−1 when the cavity distribution q\t(u)
is used as the posterior. As such, it depends on xt−1 in a complex manner, through the
covariance matrices Kftu and Kftft .

Notice that another quantity in eq. (3.49) that touches f(xt−1) is Nα(xt; f(xt−1), Q),
which is also a Gaussian in f(xt−1). Consequently, f(xt−1) can also be integrated out
analytically as follows,

qb(xt|xt−1) =
∫

df(xt−1)qa(f(xt−1))Nα(xt; f(xt−1), Q) (3.53)

=
∫

df(xt−1)N (f(xt−1); ma, va)Nα(xt; f(xt−1), Q) (3.54)

= (2π)Dx/2|α−1Q|1/2

(2π)αDx/2|Q|α/2 N (xt; ma, va + α−1Q) (3.55)
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Notice further that the cavity distribution q\t(xt−1, xt) can be decomposed,

q\t(xt−1, xt) = q\t(xt|xt−1)q\t(xt−1),

where

q\t(xt−1, xt) = N
([

xt−1

xt

]
;

m\t
xt−1

m\t
xt

 ,

 V\t
xt−1 V\t

xt−1,xt

V\t
xt,xt−1 V\t

xt

), (3.56)

q\t(xt−1) = N (xt−1; m\t
xt−1 , V\t

xt−1), (3.57)
q\t(xt|xt−1) = N (xt; c + Wxt−1; H) (3.58)

W = V\t
xt,xt−1V\t,−1

xt−1 (3.59)

c = m\t
xt −V\t

xt,xt−1V\t,−1
xt−1 m\t

xt−1 (3.60)

H = V\t
xt −V\t

xt,xt−1V\t,−1
xt−1 V\t

xt−1,xt (3.61)

This allows us to multiply q\t(xt|xt−1) with qb(xt|xt−1), and integrate out xt analytically,

Γ(c|xt−1) =
∫

dxtq
\t(xt|xt−1)qb(xt|xt−1) (3.62)

= (2π)Dx/2|α−1Q|1/2

(2π)αDx/2|Q|α/2

∫
dxt−1N (xt; c + Wxt−1; H)N (xt; ma, va + α−1Q)

(3.63)

= (2π)Dx/2|α−1Q|1/2

(2π)αDx/2|Q|α/2 N (c; ma −Wxt−1, va + H + α−1Q) (3.64)

Finally, substituting Γ(c|xt−1) into Z̃ in eq. (3.49) and noticing that xt−1 is the only
remaining variable that needs to be integrated out, lead to,

Z̃ = (2π)Dx/2|α−1Q|1/2

(2π)αDx/2|Q|α/2

∫
dxt−1N (xt−1; m\t

xt−1 , V\t
xt−1)N (c; ma −Wxt−1, va + H + α−1Q)

which is analytically intractable for general α, due to the non-linear dependencies of ma and
va in xt−1. Specifically, for each deterministic xt−1, the output c is Gaussian-distributed.
Unfortunately, as xt−1 is a random variable that we have posited a variational distribution
over, the output value when xt−1 is integrated out can be thought of as an infinite mixture
of Gaussians and is not available in closed-form.6 We will next detail three techniques that
allow Z̃ to be approximately computed, based on simple Monte Carlo, Gaussian projection
and linearisation. In control and signal processing literature, these techniques are often called
Monte-Carlo unscented propagation, moment matching unscented propagation and scented

6When α → 0, the quantity α−1log Z̃ is analytically tractable, as we will show in section 3.4.4.
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propagation respectively. The technique we develop here generalise existing methods, and
can be extended to other state-space models.

Simple Monte Carlo

For a single deterministic xt−1, Γ(c|xt−1) is a Gaussian distribution. This suggests a Monte
Carlo approach for evaluating Z̃ as follows,

Z̃ ≈ (2π)Dx/2|α−1Q|1/2

(2π)αDx/2|Q|α/2
1
L

L∑
l=1
N (c; At,lm

\t
u −Wxt−1,l, Bt,l + At,lS

\t
u A⊺

t,l + H + α−1Q),

(3.65)

where L samples, {xt−1,l}Ll=1, are randomly drawn from q\t(xt−1). For low-dimensional state
spaces, the location of the samples can be chosen according to many Gaussian quadrature
rules, e.g. Gauss-Hermite, to reduce the variance of the estimate. The gradients w.r.t. the
cavity mean and covariance are also available by differentiating through the above Monte
Carlo estimate, and using the reparameterisation trick (Kingma and Welling, 2014; Salimans
and Knowles, 2013; Rezende et al., 2014). Critically, though the estimation of Z̃ obtained
from using this Monte-Carlo procedure is unbiased (indeed it is asymptotically unbiased),
the computation of log Z̃ using this estimate will become biased. This bias can be reduced
when the number of sample points increases, and is often negliably smaller than the variance
introduced by additional Monte Carlo approximations (such as minibatch-based Monte Carlo
over training instances (Hernández-Lobato et al., 2016)).

Moment matching or Gaussian projection

It has been noted above that the integral,
∫

dxt−1q\t(xt−1)Γ(c|xt−1) is intractable as the
non-linear dependencies of the mean and covariance of Γ(c|xt−1) on xt−1, i.e. the resulting
distribution over c when x is integrated out is non-Gaussian. However, its mean and
covariance can be computed in closed-form for widely used covariance functions such as
exponentiated quadratic, linear or a more general class of spectral mixture kernels (Wilson
and Adams, 2013). Following Girard et al. (2003); Deisenroth and Mohamed (2012), we can
use the law of iterated conditionals to exactly find the mean and covariance of the distribution
over the output values in eq. (3.64) as follows,

mc = Eq\t(xt−1)[mΓ(c|xt−1)], (3.66)

Sc = Eq\t(xt−1)[vΓ(c|xt−1)] + varq\t(xt−1)[mΓ(c|xt−1)] (3.67)

which in words are the expected mean, and the sum of the expected variance and the variance
of the mean, respectively, where the expectations are taken w.r.t. q\t(xt−1). Substituting the
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mean and covariance of Γ(c|xt−1) in eq. (3.64) in the above results gives:

mc = ⟨At⟩q\t(xt−1)m
\t
u −Wm\t

xt−1 , (3.68)

Sc = ⟨Bt⟩q\t(xt−1) + ⟨At[S\t
u + m\t

u m\t,⊺
u ]A⊺

t ⟩q\t(xt−1) + 2W⟨xt−1m\t
u A⊺

t ⟩q\t(xt−1)

+ W[V\t
xt−1 + m\t

xt−1m\t,⊺
xt−1 ]W⊺ + H + α−1Q−mcm⊺

c. (3.69)

Computing the above mean and covariance requires the expectations of the covariance
matrices, as identically needed in the VFE approach. Critically, a Gaussian distribution of
the same mean and covariance can be used as an approximation to the non-Gaussian and
intractable distribution over c when xt−1 is integrated out, allowing analytic computation of
an approximation to Z̃ as follows,

Z̃ ≈ (2π)Dx/2|α−1Q|1/2

(2π)αDx/2|Q|α/2 N (c; mc, Sc). (3.70)

This Gaussian projection procedure is illustrated in fig. 3.2, which shows that the approxima-
tion is accurate when the cavity distributions have tight (co)variances, and inaccurate, but
desirably so, when these distributions are uncertain and the output values are multi-modal
and heavy-tailed.

Linearisation

The core reason why the above approximations are needed is the propagation of the input
distribution through a distribution or process over the latent non-linear function, whose
covariance function depends on the input in a non-linear manner. This is no longer an issue
when the underlying function is linear and the covariance function is a constant w.r.t. the
input. Using this insight leads us to a local linearisation of the mapping from xt−1 to c,
around the mean m\t

xt−1 of the cavity distribution q\t(xt−1) as follows,

Γ(c|xt−1) ∝ N (c; ma −Wxt−1, va + H + α−1Q) ≈ Γ̃(c|xt−1) ∝ N (c; m̃Γ, S̃Γ),

where Γ̃c =
[
A

t,m\t
xt−1

+
Dx∑
d=1

(xt−1,d −mt−1,d) ∂At

∂xt−1,d

∣∣∣
m\t

xt−1

]
m\t

u + Wxt−1,

S̃Γ = B
t,m\t

xt−1
+ A

t,m\t
xt−1

S\t
u A⊺

t,m\t
xt−1

+ H + α−1Q,

and A
t,m\t

xt−1
and B

t,m\t
xt−1

are At and Bt evaluated at m\t
xt−1 , and { ∂At

∂xt−1,d
}Dx

d=1 are the
gradients of At w.r.t. xt−1. The linearisation step above assumes the mapping from xt−1 to
c is linear around the mean of q\t(xt−1), and it is accurate when this is the case. In addition,
this approximation step does not rely on the covariance of q\t(xt−1), that is different input
distributions with the same mean will lead to the same linearisation. However, the covariance
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Fig. 3.2 An illustration of propagating a distribution over the inputs through a non-linear
function, and the Gaussian projection approximation. The top plot shows the distributions
over inputs, with different means and variances. The second plot shows a distribution of
possible non-linear functions; these functions are the transition dynamics in the GPSSM case,
and the input warping in the GPLVM case. The next five plots show the exact marginal
distributions of the output values and the approximate Gaussian projections. Note that the
exact marginals are an infinite mixture of Gaussians, and can be heavy-tailed or multi-modal

— we approximate this by the simple Monte Carlo estimate using a large number of samples.
The Gaussian approximations are uni-modal and possess the same means and variances as
the exact non-analytic marginals.
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will affect the distribution over the function ouputs, when the input distribution is passed
through the linearised approximation. Specifically, passing the Gaussian cavity distribution
over the input through the function above leads to a closed-form Gaussian distribution
q(c) ∝ N (c; mc, Sc), where,

mc = A
t,m\t

xt−1
m\t

u + Wm\t
xt−1 , (3.71)

Sc = B
t,m\t

xt−1
+ A

t,m\t
xt−1

S\t
u A⊺

t,m\t
xt−1

+ dtS\t
xt−1d⊺

t + H + α−1Q, (3.72)

where dt is a vector whose elements are { ∂At
∂xt−1,d

m\t
u }Dx

d=1. This linearisation procedure is
illustrated in fig. 3.3, which shows the approximation is often over-confident and potentially
very damaging if the aproximate distribution is used for the next stage (such as computing
log Z̃). Similar to the moment matching approximation above, this analytic Gaussian
approximation leads to an analytic approximation to to Z̃ as follows,

Z̃ ≈ (2π)Dx/2|α−1Q|1/2

(2π)αDx/2|Q|α/2 N (c; mc, Sc). (3.73)

3.4.2 Dealing with the emission factor p(yt|xt−1)

Following the same Power EP steps as above, we can derive the iterative updates for γt(xt)
such that it approximates the effect of the emission likelihood p(yt|xt−1) on the posterior. In
detail, the posterior over the latent variable xt, the cavity distribution when a fraction of
γt(xt) is removed, and the tilted distributions when a fraction of p(yt|xt) is put back are as
follows,

q(xt) = ϕt(xt)ϕt+1(xt)γt(xt) (3.74)
q\t(xt) = ϕt(xt)ϕt+1(xt)γ1−α

t (xt) (3.75)
q̃(xt) = q\t(xt)pα(yt|xt) (3.76)

We have assumed in the previous section that the emission likelihood takes a Gaussian form,
p(yt|xt) = N (yt; Uxt, Ry), and that the approximate factor γt(xt) is also a Gaussian over
xt. As such, it is straightforward to show that in the Gaussian case, the parameters for γt(xt)
are identical to that of p(yt|xt), when p(yt|xt) is viewed as a Gaussian over xt,

γt(xt) ∝ exp(−1
2xtU⊺RyUx⊺

t + xtU⊺Ryy). (3.77)

Note that this optimal form does not depend on the power parameter of Power EP, α.
However, the log-normaliser of the tilted distribution and hence the contribution of the
emission likelihood towards the approximate marginal likelihood does depend on α, as
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Fig. 3.3 An illustration of propagating a distribution over the inputs through a non-linear
function and the linearisation approximation. The top plot shows the distributions over inputs,
with different means and variances. The second plot shows a distribution of possible non-linear
functions; these functions are the transition dynamics in the GPSSM case, and the input
warping in the GPLVM case. The next five plots show the exact marginal distributions of the
output values and the approximate Gaussian projections. Note that the exact marginals are
an infinite mixture of Gaussians, and can be heavy-tailed or multi-modal — we approximate
this by the simple Monte Carlo estimate using a large number of samples. The Gaussian
approximations are formed by passing the input distributions through a linear approximation
of the function around the input mean. This approximation is accurate in the region where
the function is linear, and undesirably inaccurate at the wiggly peaks of the function.
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follows,

Z̃ =
∫

dxtq
\t(xt)pα(yt|xt) = (2π)Dy/2|α−1Ry|

(2π)αDy/2|Ry|α
N (yt; Um\t

xt ; US\t
xtU⊺ + α−1Ry). (3.78)

3.4.3 Power EP energy and hyperparameter optimisation

The previous sections have detailed how the Power EP procedure iteratively updates and
refines the approximate posterior. When this procedure converges, the resulting fixed point
is a stationary point of an energy function, called the Power EP energy, which can be treated
as an approximation to the negative marginal likelihood (Minka, 2001a). In contrast to the
variational free-energy (which we will show to be the Power EP energy as α→ 0), there is
no guarantee for this energy to be an upper bound of the negative marginal likelihood for
general α. This is a caveat when using the Power EP energy for hyperparameter optimisation,
as a lower bound when minimised can go arbitrarily small. However, Power EP often works
well in practice, and the energy is often close to the exact negative marginal likelihood in
many models. For GPSSMs, the negative Power EP energy can be obtained in closed form
after performing the Power EP iterative procedure, as follows,

Fpep(θ) = Φ[q(x0:T , u)]− Φ[p(x0)]− Φ[p(u)] + 1
α

T∑
t=1

(
Fpep, dyn, t + Fpep,emi

t

)
,

(3.79)

and Fpep,dyn
t = log Z̃dyn, t − Φ[q(xt−1:t, u)] + Φ[q\t(xt−1:t, u)], (3.80)
Fpep,emi

t = log Z̃emi, t − Φ[q(xt)] + Φ[q\t(xt)], (3.81)

Φ[N (x; m, S)] = 1
2mS−1m⊺ + 1

2 log |S|. (3.82)

Note that the approximations to the log normaliser of the tilted distributions are already
needed and computed for the Power EP iterative procedure, so the energy above can be
computed at a very small extra cost of computing the log-partition function of the Gaussian
cavity and posterior distributions.
The gradients of the energy w.r.t. the model hyperparameters can also be computed, allowing
gradient-based optimisers to be deployed. Additionally, the energy in eq. (3.79) involves a
sum over the time steps and is hence amenable to stochastic optimisation. In detail, similar
to the stochastic treatment to the uncollapsed variational free-energy, a random subsequence
can be used to obtain an unbiased, noisy estimate of the (approximate) Power EP energy as
follows,

FPEP(θ) ≈ Φ[q(x0:T , u)]− Φ[p(x0)]− Φ[p(u)] + T

B

1
α

B∑
b=1

(Fpep, dyn,b + Fpep, emi,b) . (3.83)
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3.4.4 When VFE is recovered, as α→ 0?

We have shown in eq. (3.45) that the approximate posterior formed by the proposed factori-
sation used in this session is identical to the approximate posterior used in the VFE case,
where we have assumed a mean-field approximation for the latent variables x0:T (i.e. the
diagonal Gaussian parameterisation for q(x0:T ) presented in section 3.3). As α→ 0, inference
and learning using Power EP are equivalent to that using the VFE technique, and the exact
Power EP energy is identical to the variational free-energy. However, unlike the variational
free-energy, the Power EP for GPSSMs is not analytically available and requires additional
approximations. The focus of this section is to examine how different approximations of the
log-normaliser of the tilted distributions log Z̃dyn, t including simple Monte Carlo, Gaussian
projection and linearisation affect the convergence to the variational free-energy.

As a reminder, the uncollapsed variational free-energy in eq. (3.14) for a mean-field
Gaussian q(x0:T ) requires no further approximation and is available in closed-form as follows,

Fvfe(.) = −KL(q(u)||p(u)) +
T∑

t=0
H(q(xt)) + ⟨log p(x0)⟩q(x0) +

T∑
t=1
Fvfe, dyn, t +

T∑
t=1
Fvfe, emi, t,

where Fvfe, dyn, t, Fvfe, emi, t, KL(q(u)||p(u)) and ⟨log p(x0)⟩q(x0) are detailed in eqs. (3.32)
to (3.35), and H(q(xt)) is the entropy of the posterior q(xt). In the case when no additional
approximations for log Z̃dyn, t are needed, the following Maclaurin expansion can be done
when α is small:

1
α

log Z̃dyn, t = 1
α

log
∫

dfdxt−1:tq(f, xt−1:t)pα(xt|f, xt−1) (3.84)

= 1
α

log
∫

dfdxt−1:tq(f, xt−1:t)[1 + α log p(xt|f, xt−1) + ξ(α2)] (3.85)

= 1
α

log[1 + α

∫
dfdxt−1:tq(f, xt−1:t) log p(xt|f, xt−1) + α2ξ(1)] (3.86)

=
∫

dfdxt−1:tq(f, xt−1:t) log p(xt|f, xt−1) + αξ(1), (3.87)

and thus,

lim
α→0

1
α

log Z̃dyn, t =
∫

dfdxt−1:tq(f, xt−1:t) log p(xt|f, xt−1) = Fvfe, dyn, t. (3.88)

However, because of the approximation schemes to log Z̃dyn, t, the limit above is potentially
no longer equal to Fvfe, dyn, t. We detail the limit for each approximation scheme below.

Simple Monte Carlo

The integration w.r.t. q(xt−1) in log Z̃dyn, t can be approximated using simple Monte Carlo,
as we have shown in eq. (3.65). It is useful here to consider the raw form of the Monte Carlo
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estimate,

log Z̃dyn,mc
t = log 1

L

L∑
l=1

∫
dfdxtq(f, xt)pα(xt|f, xt−1,l), (3.89)

where L is the number of samples drawn from q(xt−1), as an analysis for small α similar to
the above can be done leading to,

lim
α→0

1
α

log Z̃dyn,mct = 1
L

L∑
l=1

∫
dfdxtq(f, xt) log p(xt|f, xt−1,l). (3.90)

The right hand size of eq. (3.90) is exactly a Monte Carlo approximation of Fvfe, dyn, t.
Therefore, when the number of xt−1 samples is large and as α→ 0, 1

α log Z̃dyn, t tends exactly
to Fvfe, dyn, t. In this case, the bias introduced by applying a logarithmic operation to a
Monte Carlo estimate tends to 0.

Moment matching

Taking the log of the approximation in eq. (3.70) gives,

log Z̃dyn,mm
t = −α

2 log[(2π)Dx |Q|]− 1
2 log[I + αŜcQ−1]

− α

2 (c−mc)(αŜc + Q)−1(c−mc)⊺,

where Ŝc = Sc − αQ, which does not depend on α (see eq. (3.70)). Noting that as α→ 0,
the cavity distributions are the approximate posteriors, we can obtain,

lim
α→0

1
α

log Z̃dyn,mm
t = −1

2 log[(2π)Dx |Q|]− 1
2 tr[ŜcQ−1]

− 1
2(c−mc)Q−1(c−mc)⊺. (3.91)

Substituting mb and Sb from eq. (3.68) and eq. (3.69) into the equation above gives the
result identical to eq. (3.32), that is Fvfe,dyn

t . The reason for this surprising equality is that
the variational free energy only requires the first and second moments of the non-Gaussian
output distributions (after passing a Gaussian through a non-linearity), and the additional
moment matching approximation presented above preserves these quantities exactly.

Linearisation

The derivation for the moment matching approximation above up to eq. (3.91) can be reused
for the linearisation approximation, as eqs. (3.70) and (3.73) are identical. However, as mb

and Sb in eqs. (3.71) and (3.71) are different compared to the moment matching case, the
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limit in eq. (3.91) is not equal to Fvfe,dyn
t , and hence the approximate Power EP energy with

linearisation will not tend to the variational free-energy when α→ 0.

3.4.5 Short summary

The Power EP energy presentation above completes the recipe for approximate posterior
inference and hyperparameter learning in GPSSMs based on Power EP: run the Power
EP iterative procedure (using simple Monte Carlo, Gaussian projection, or linearisation
to find the approximate updates) until convergence, perform a gradient step to minimise
the Power EP w.r.t. the hyperparameters and repeat. The Power EP also enables these
propagation approximations what were used previously in EP to be deployed in VFE and for
intermediate α values. This may have computational and algorithmic advantages in some
settings. Additionally, each factor can have its own private α value, which means multiple
approximation schemes with different α powers can be used in a single algorithmic procedure.

3.5 The approximate Power EP approach

Power EP is a general and flexible framework for approximate inference and learning, as
shown in chapter 2 for GP regression and classification and the previous section for GPSSMs.
Importantly, intermediate α values have been shown to be advantageous compared to VFE
and EP in certain model classes (e.g. see chapter 2). However, this flexibility does come
at a cost, as previously discussed in section 2.6. For clarity, we list the points discussed in
section 2.6 here and add a couple of GPSSM-specific points,

• Hyperparameter updates and posterior inference need to be interleaved during learn-
ing, that is, there is no single objective function or procedure for learning both the
hyperparameters and approximate posterior at the same time. Optimising the Power
EP energy to obtain the approximate posterior alone (instead of running the iterative
procedure) is also not straightforward, as non-standard, double-loop schemes needed to
be deployed (Heskes and Zoeter, 2002). The VFE approach, on the other hand, provides
a lower bound to the marginal likelihood, which can be optimised to concurrently learn
both the hyperparameters and the approximate posterior. There are ways to side-step
this problem, for example, not waiting for Power EP to converge before performing an
update for the hyperparameters. However, this remains as an arguably major reason
why Power EP is not used more widely in practice when hyperparameter optimisation
is required.

• Numerical stability is a known issue for Power EP and in particular when using Power
EP for GPSSMs (McHutchon, 2014). The Power EP update equations do not guarantee
the new posterior covariance to be positive definite (or positive if the variable is single
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dimensional), forcing additional heuristics such as damping to be used. In VFE, as the
approximate posterior’s (co)variances are parameterised under a specific transformation
(for example: for the structured Gaussian case, the covariance matrix is parameterised
using its triangular Cholesky decomposition), they are guaranteed to be positive definite.

• The sequential update nature of Power EP is problematic for long time series, as
multiple passes over the training data are needed for convergence. Parallel updates
can be used instead, but are prone to further numerical problems. Techniques such as
damping or skipping can be used (see e.g. Minka and Lafferty, 2002), but they are not
sufficient for all cases.

• For a long time series, a high-dimensional latent space and a large number of pseudo-
points, the memory required to parameterise all the approximate factors is high
and could be out of reach. Techniques such as average or stochastic EP (Li et al.,
2015; Dehaene and Barthelmé, 2015) can significantly reduce this memory complexity.
However, though this memory limitation is not a major focus of this chapter, it turns
out that the trick employed in stochastic EP to reduce the memory constraint can be
used to sidestep other problems.

As mentioned above, stochastic EP greatly reduces the memory complexity of Power EP.
This is achived by using the same parameterisation for similar factors, enforcing an identical
contribution from each factor to the posterior. The application of this approximation to
GPSSMs is illustrated in fig. 3.1(C,D). Each common factor could be thought of as the average
effect each factor has on the posterior, for example, in fig. 3.1(D), λt in the approximate
scheme is the average contribution towards the posterior from λt, βt+1 and γt in the original
factorisation in fig. 3.1(C).

Having described an approximate factorisation, one could proceed to run the Power EP
iterative procedure (Li et al., 2015), and then perform hyperparameter optimisation as an
outer loop as with Power EP. However, Hernández-Lobato et al. (2016) noticed that the factor
tying approximation above turns the original minimax Power EP energy optimisation problem
into a minimisation problem. In other words, in a similar fashion to the VFE approach, the
approximate Power EP energy can now be optimised using standard optimisation techniques,
to find both the approximate posterior and the hyperparameters.

3.6 Predictions

Given the approximate posterior over the hidden variables and the non-linear dynamics, we
wish to forecast or predict the future observations. First, we consider a one-step prediction
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task in which the object of interest is,

p(y∗
T +1|y1:T ) =

∫
p(y∗

T +1|x∗
T +1)p(x∗

T +1|y1:T )dx∗
T +1

where p(x∗
T +1|y1:T ) =

∫
p(x∗

T +1|xT , f)p(xT , f |y1:T )dfdxT

≈
∫

p(x∗
T +1|xT , f)q(xT )q(f)dfdx∗

T , (3.92)

and we have replaced the exact posterior by the approximate posterior in eq. (3.92). Note
that the computation required in eq. (3.92) is nearly identical to that required for the log
normaliser of the tilted distribution in eq. (3.49). In particular, we have to find a GP
predictive distribution with a Gaussian input – this is analytically intractable. Fortunately,
all approximate propagation techniques discussed in section 3.4, such as Gaussian projection
and simple Monte Carlo, can be used here. These techniques approximates the predictive
distribution p(x∗

T +1|y1:T ) by a single Gaussian distribution or by a set of samples, which can
be mapped through the emission model to obtain the approximate one-step prediction.

By following the similar procedure, the approximate predictive distribution at the k-th
step in the future can also be obtained as follows,

p(y∗
T +k|y1:T ) =

∫
p(y∗

T +k|x∗
T +k)p(x∗

T +k|y1:T )dx∗
T +k

where p(x∗
T +k|y1:T ) ≈

∫
p(x∗

T +k|x∗
T +k−1, f)q(x∗

T +k−1)q(f)dfdx∗
T +k−1,

which means the approximate predictive distribution at one time step can be passed forwards
to make prediction at the next step.

3.7 The Gaussian process latent variable model

In this section, we consider a class of models closely-related to the GPSSM, namely the
Gaussian process latent variable model (GPLVM, Lawrence, 2005). In detail, given a set
of N D-dimensional observations, Y = {yn}Nn=1, a GPLVM assumes that there are N Q-
dimensional latent variables, X = {xn}Nn=1, one for each observation, and that the mapping
from the latent variables to each dimension of the observed data is a GP. The generative
model can be summarised as follows,

p(X) =
N∏

n=1
p(xn), (3.93)

p(fd) = GP(0, k(·, ·)) for d = 1 : D (3.94)

p(Y|X, f1:D) =
N∏

n=1

D∏
d=1
N (yn,d; fd(xn), σ2

y), (3.95)
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where we have assumed a factorised Gaussian likelihood, but other observation models can
be easily accommodated (see e.g. Gal et al., 2015). Typically, the dimensionality of the latent
variables is smaller than that of the data, and in this case, learning the latent variables given
the observed data is a form of probabilistic nonlinear dimensionality reduction.

The GPLVM could be thought of as an extension to the GP regression model when
the inputs are random variables, or a special case of the GPSSM when there are N time
series, each with only one time step and the emission model is a δ-function. As a result,
the approximate inference and learning procedure discussed for GPSSMs can be directly
applied to the GPLVM case. As they are straightforward to derive and given the similarity
to the previous sections, we will not provide a detailed derivation of each method here.
We summarise the existing literature and their relationships in table 3.2. The form of the
approximate posterior used in Power-EP and VFE are pictorially depicted in fig. 3.4[B], which
is an approximation to the exact posterior/factor graph displayed in fig. 3.4[A]. Similar to the
GPSSM case, the factors for the global variable (the GP mappings) can be tied (as shown
in fig. 3.1[C]) to give an approximate Power-EP energy which can be directly optimised, as
discussed in section 3.5. And similar to the GPSSM case, as α → 0, the VFE approach
presented by Titsias and Lawrence (2010) is recovered.

Table 3.2 Approximation schemes that have been used for GPLVMs. In all cases (except
MAP), q(u) is assumed Gaussian, q(u) = N (u; m, S).

Inf. method q(x0:N ) Notes and references

MAP MAP
Lawrence (2005)

Lawrence and Quiñonero-Candela (2006) used inf. networks
to parameterise x0:N

VFE Gaussian

Titsias and Lawrence (2010), q(u) collapsable
uncollapsed energy can be distributed (Gal et al., 2014)

or parallelised (Dai et al., 2014)
Gal et al. (2015) used simple MC to evaluate the energy

for non-Gaussian likelihoods
Bui and Turner (2015) used inf. networks

to parameterise q(x0:N )
Power EP Gaussian factors can be tied, α→ 0 gives VFE, see figs. 3.4[B, C]
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A B C

Fig. 3.4 A: a factor graph of the Gaussian process latent variable model. Note that while
there are many factor graphs that can be used to show the same model, our approximation is
based on this representation. B: a factor graph showing approximate factors and the variables
that each factor involves. This factor graph assumes a mean-field structure between the
latent variables and the latent GP mapping. C: a factor graph showing how factors involving
the latent function can be tied. Best viewed in colour.
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3.8 Experiments

In this section, we detail several experiments comparing the VFE approach (section 3.3) and
the approximate Power EP approach (section 3.5) on learning one toy and one real-world non-
linear dynamics. A mean-field diagonal Gaussian approximation over the hidden state space
variables, as shown in section 3.3.4 and fig. 3.1, is used for both methods. The variational
free-energy and the approximate Power EP energy are optimised using the Adam optimiser
with its standard learning rate (Kingma and Ba, 2015).

3.8.1 Learning a one-dimensional non-linear system

In the first experiment, we compare the approximate negative log marginal likelihood that the
VFE and approximate Power EP methods provide, and examine the quantitative performance
of each method on a toy time series. This time series consists of 200 time steps, which are
generated by simulating the kink non-linear system,

xt = f(xt−1) + σxϵx

yt = xt + σyϵy

where f(xt−1) =

xt−1 + 1 if xt−1 < 4

−4xt−1 + 21 otherwise.

ϵx, ϵy ∼ N (0, 1),

and σ2
x = 0.2, σ2

y = 0.05. To approximate the titled distribution, the Gaussian projection
and simple Monte Carlo approximations are used. The number of pseudo-points used for all
experiments here is 30.

Training curves and qualitative comparisons of learnt dynamics

The training curves for VFE and approximate Power EP with various α values are shown
in fig. 3.5. Note that Power EP with α = 0.0001 gives results nearly identical to the VFE
approach, which confirms the convergence results discussed in previous sections. Similar to
behaviours observed in the GP regression and classification, and deep GP cases, the Power
EP energy tends to be smaller for bigger α. However, this does not always translate to
better qualitative performance as shown in figs. 3.6 and 3.7. In particular, the VFE approach
tends to give high dynamical noise variances, while the approximate Power EP approach
with large α (e.g. α = 1) learns very small noise variances (for both dynamical noise and
observation noise), resulting in over-confident predictions. Additionally, there is no clear
difference between the Gaussian projection and simple Monte Carlo approximations in this
example.
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Fig. 3.5 The variational and approximate Power EP energies during training. Solid lines are
results using the Gaussian projection to approximate the tilted distribution and dashed lines
the simple Monte Carlo approximation with 20 samples. Note that Power EP with α = 0.0001
gives results nearly identical to the VFE approach, which confirms the convergence results
discussed in the text. Additionally, similar to behaviours observed in the GP regression and
classification, and deep GP cases, the Power EP energy tends to be smaller for bigger α.
However, this does not always translate to better qualitative performance as shown in figs. 3.6
and 3.7, or better quantitative performance as shown in fig. 3.9 . Additionally, there is no
clear difference between the Gaussian projection and simple Monte Carlo approximations in
this case. Best viewed in colour.
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Fig. 3.6 The dynamics mapping from a time step to the next time step, learnt by the VFE
approach and the approximate Power EP approach with the Gaussian projection/moment
matching approximation. In each plot, the black line is the ground truth non-linear function,
the black dots are the observed values, and the coloured line and shaded area are the mean
and confidence interval of the output predictions. The hyperparameter values are included in
the plot. Note that the VFE approach tends to give high dynamical noise variances, while the
approximate Power EP approach with large α (e.g. α = 1) learns very small noise variances
for both dynamical noise and observation noise. Best viewed in colour.
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Fig. 3.7 The dynamics mapping from a time step to the next time step, learnt by the
VFE approach and the approximate Power EP approach with the simple Monte Carlo
approximation. See fig. 3.6 for more details about the plots. Similar to the Gaussian
projection case in fig. 3.6, the VFE approach tends to give high dynamical noise variances,
while the approximate Power EP approach with large α (e.g. α = 1) learns very small noise
variances for both dynamical noise and observation noise. Best viewed in colour.
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Using different propagation techniques for prediction

Having trained the model using various approximate inference and learning methods, we
consider a task of predicting the outputs at future time steps. In particular, we use the
models trained with approximate Power EP with different α values and make predictions
using three different forward propagation techniques: Gaussian projection/moment matching
(MM), linearisation (LIN) and simple Monte Carlo (MC). We plot in fig. 3.8 the prediction
made by these propagation methods on a time series, as well as the predictive marginals
at several future time steps for different α values used to train the model. We can observe
that the simple Monte Carlo propagation is the best performing method for prediction as
it provides predictive samples that are diverse and structurally similar to the training set,
even after many future steps. In contrast, the predictions using the moment matching and
linear propagation methods appear very uncertain after only a few steps. We also note that
models trained with approximate Power EP with higher α values tend to give more confident
predictions, and the Monte Carlo approximation, in this case, tends to produce multi-modal
predictive distributions (see fig. 3.8, lower half, bottom right).

We attempt to quantitatively compare the difference between different α values and
different propagation methods in fig. 3.9. We repeat the training procedure above for 100
different time-series generated from the kink system. The prediction quality is measured by
the average log-likelihood the prediction at future time steps. The results shown in fig. 3.9
confirm that the simple Monte Carlo propagation outperforms other propagation methods.
The closest competitor is the Gaussian project/moment matching method. Additionally, the
results also show models trained with small α values are more competitive (e.g. see α = 0.001
vs. α = 0.8 in fig. 3.9).

3.8.2 Modelling action potential data generated by the Hodgkin–Huxley
model

In this experiment, we attempt to learn a model from synthetic action potential data generated
from the Hodgkin-Huxley model (Hodgkin and Huxley, 1952). The Hodgkin–Huxley model
is a well-established mathematical model that describes how action potentials in neurons are
initiated and propagated. This model can be thought of as a set of four ordinary differential
equations driven by an external current I, with four state variables, action potential V
and gating values m, h, n, that change with respect to time. The system is difficult to
study because it is a non-linear system and cannot be solved analytically. We generate a
four-dimensional time series from this system using a series of step and slope injected currents
as shown in fig. 3.10. The system is known to have limit cycles when the input current is
sufficiently large, as shown in fig. 3.11. Our goal here is to demonstrate the ability of the
learning algorithm to learn a non-linear dynamics from data without using any biological
insight.
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Fig. 3.8 Look-ahead predictions using Gaussian projection, linearisation, and simple Monte
Carlo. TOP: a time series and ground truth observations (bold trajectory), and predictive
means and variances for 20 future time steps obtained using different propagation methods,
after training the model using approximate Power EP with α = 0.5. BOTTOM: the marginal
densities obtained by various methods using different models trained with various α values.
The black lines are placed at the observed values. See text for more details. Best viewed in
colour.
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Fig. 3.9 The log likelihood (LL) of the look-ahead predictions given by various approximate
propagation techniques on models trained with different α values [TOP], and the difference
between the performance of various α values and α = 0.0001 for each approximate propagation
method [BOTTOM 3]. The higher the log-likelihood (LL), the better the prediction quality.
LL ∆ is the LL for a method less that of α = 0.0001, that is a negative LL ∆ means the
considered method is worse than approximate Power EP with α = 0.0001. The top plot
demonstrates that the simple Monte Carlo approximation is the best performing method,
and the approach based on linearisation performs poorly. The bottom three plots show a
marked difference between the performance of α = 0.8 and smaller α values, suggesting that
smaller α values are better for training models which can give more accurate predictions at
test time. Best viewed in colour.

To model the generated data shown in fig. 3.10, we use a GPSSM with two-dimensional
state variables and a GP emission model, which results in 6 GPs to be learnt, 2 for the
dynamics model and 4 for the emission model. There are reductions of the Hodgkin-Huxley
model that use just two state variables, see e.g. Krinskĭı and Kokoz (1973), indicating
that a two-dimensional state space might be sufficient for modelling purposes. We use 30
pseudo-points for each GP, where the pseudo-inputs for the dynamic GPs are shared and
the pseudo-inputs for the emission GPs are shared. In light of the results discussed in the
last section, we train the model using approximate Power EP with a small α value, α = 0.2,
using the Gaussian projection method to approximate the tilted distribution. To evaluate
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Fig. 3.10 The membrane action potentials, V, and gating channel values, m, h and n, generated
by the Hodgkin-Huxley model, given a series of slope and step inject currents, I.
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Fig. 3.11 A phase space plot the simulation in fig. 3.10 in terms of the potential V and the
gating channel n. The Hodgkin-Huxley is known to have non-linear dynamics, for example
the limit cycles shown in this plot.

the trained model, we compute the prediction from the current step given the next injected
current for many future time steps. Note that the injected currents at test time are different
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from that at training time. The predictions made by using the Gaussian projection (moment
matching) propagation and the simple Monte Carlo propagation are shown in figs. 3.12
and 3.13, respectively. The simple Monte Carlo approach gives good predictions for many
future time steps, and produces structurally reasonable samples even in the region of unseen
control signal (see the quantitative comparison between the predictions and the ground
truth in figs. 3.12 and 3.13). In contrast, the moment matching approach gives reasonable
predictions only up to about 100 future steps and quickly reverts to underconfident predictions
soon after.

3.9 Summary

This chapter reviewed existing approximations and proposed a unifying framework for
approximate posterior inference and learning in GP state space models and latent variable
models, based on Power EP. Several approximate uncertainty propagation methods in
recurrent architectures, based on linearisation, moment matching/Gaussian projection, and
simple Monte Carlo, are also discussed. The performance of the proposed framework was
assessed and validated on several toy and real-world system identification tasks.

3.10 Extensions

In this section, we detail an alternative approximate posterior for inference and learning in
GPSSMs, and a potential application of the proposed inference and learning scheme to active
system identification. Early experiments indicate these are potentially promising extensions,
but they are left as future work.

3.10.1 An alternative approximate posterior for GPSSMs

The ealier sections in this chapter have introduced several approximate Bayesian schemes for
inference and learning in GPSSMs. In particular, a significant effort was spent addressing
how to choose a variational distribution for the variables that can retain correlations between
variables and admits efficient computation. Choosing such a distribution is not trivial and the
previous sections had to resorts to approximations that assume a mean-field structure between
the hidden variables and the latent function, and a mean-field or Markovian structure between
the hidden variables. Whilst seemingly working well in practice, as shown in section 3.8,
potential drawbacks of these approximations include the need to parameterise the variational
approximation for the hidden variables and a question of how to sensible initialise this
distribution. Inspired by recent work by Salimbeni and Deisenroth (2017) for deep GPs, we
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Fig. 3.12 Look-ahead forecasting of the action potentials and gating channels using the
Gaussian projection propagation method. The left halves of the plots show the marginal
posterior over the training points (the solid line is the mean and the shaded area shows four
standard deviations). The right halves of the plots show the predictive marginals at future
time steps (the solid line is the mean and the shaded area shows two standard deviations).
The black traces show the ground truth simulated data. Best viewed in colour.

suggest the following approximate posterior that can circumvent many of these difficulties,

q(x0:T , f) = p(f)p(x0)
T∏

t=1
[p(xt|xt−1, f)ht(u)]

= p(f̸=u|u) p(u)
[

T∏
t=1

ht(u)
]

︸ ︷︷ ︸
q(u)

[
p(x0)

T∏
t=1

p(xt|xt−1, f)
]

︸ ︷︷ ︸
p(x0:T |f)

.
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Fig. 3.13 Look-ahead forecasting of the action potentials and gating channels using the simple
Monte Carlo propagation method. The left halves of the plots show the marginal posterior
over the training points (the solid line is the mean and the shaded area shows four standard
deviations). The right halves of the plots show 20 trajectories given by the Monte Carlo
propagation. The black traces show the ground truth simulated data. Best viewed in colour.

Note that the exact joint density is,

p(x0:T , f, y1:T ) = p(f)p(x0)
T∏

t=1
[p(xt|xt−1, f)p(yt|xt)] ,
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which means the approximate posterior retains many terms in the original joint density and
only introduces a variational approximation for the global variable (the GP mapping). Notably,
unlike the approximations discussed in the previous sections, this approximation explicitly
retains the correlations between the hidden variables and the global GP mapping, and between
the hidden variables [when the global variable is integrated out, the hidden variables become
correlated]. This approximate posterior can be employed in many deterministic schemes
previously discussed including variational inference and Power EP. For example, we can write
down the variational free-energy using the suggested approximate posterior as follows,

Fvfe(.) =
∫

q(x0:T , f) log p(x0:T , f, y1:T )
q(x0:T , f) dx0:T df

=
∫

q(x0:T , f) log
XXXXXp(f̸=u|u)p(u)

hhhhhhhhhhhhh

[
p(x0)∏T

t=1 p(xt|xt−1, f)
] [∏T

t=1 p(yt|xt)
]

XXXXXp(f̸=u|u)q(u)
hhhhhhhhhhhhh

[
p(x0)∏T

t=1 p(xt|xt−1, f)
] dx0:T df

= −KL[q(u)||p(u)] +
T∑

t=1

∫
dxtq(xt) log p(yt|xt),

where q(xt) =
∫ ∏t

i=1 p(xi|xi−1, f)p(f̸=u|u)q(u)dx0:t−1df , which can be obtained using a
forward pass with nested simple Monte Carlo or Gaussian projections. Note that only a
forward pass is needed to compute the free-energy due to the Markovian structure of the
approximate posterior. However, to compute the gradients of the energy w.r.t. the parameters,
a backward pass (back-propagation) is necessary. The final form of the free-energy seems
much simpler compared to eq. (3.14), but two problems remain to be addressed: i. whether the
forward pass can be implemented efficiently in practice, and ii. the efficacy of this approach
on real-world state-space modelling tasks.

3.10.2 Active learning for data-efficient system identification

In this section, we suggest a sequential decision making task that makes use of the predictive
uncertainty provided by the proposed approximate inference framework. In particular,
we consider an active learning (optimal experimental design) task for non-linear system
identification, that is, to sequentially select control variables such that the non-linear system
can be identified in a data-efficient manner. Assume that a GPSSM was trained using a
training time-series of length T , comprising of control inputs c0:T := c and observed data
y0:T := y. The active learning task seeks to find a new control signal ĉ0:T̂ := ĉ such that the
new data ŷ0:T̂ := ŷ generated from the system using this control signal, together with the
existing data can be used to update the trained GPSSM and result in a more accurate and
more certain estimate of the non-linear dynamics. MacKay (1992); Houlsby et al. (2011)
suggested expressing the aforementioned desideratum using the following information-theoretic
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objective:

J (ĉ) = H(p(f |c, y))− Ep(ŷ|ĉ,c,y)[H(p(f |ĉ, ŷ, c, y))] (3.96)
= I(f, ŷ|ĉ, c, y) (3.97)
= H(p(ŷ|ĉ, c, y))− Ep(f |c,y)[H(p(ŷ|ĉ, f))]. (3.98)

Equation (3.98) is more advantageous compared to eq. (3.96), as it only involves the predictive
densities whilst eq. (3.96) needs to access the posterior conditioned on an unknown control
signal. However, both terms in eq. (3.98) are not analytically tractable, as the hidden
variables for the new time series and the dynamics need to be integrated out, for example
the first term requires,

p(ŷ|ĉ, c, y) =
∫

p(ŷ|x̂, f, ĉ)p(f |c, y)p(x̂)dx̂df (3.99)

=
∫ T̂∏

t=0
[p(ŷt|x̂t)p(x̂t|x̂t−1, f, ĉt)]p(f |c, y)dx̂df. (3.100)

Similar to the approach suggested in Depeweg et al. (2016b), we can employ a simple Monte
Carlo approach to evaluate the above integral,

p(ŷ|ĉ, c, y) ≈ 1
K

K∑
k=1

∫ T̂∏
t=0

[p(ŷt|x̂t)p(x̂t|x̂t−1, fk, ĉt)]dx̂, (3.101)

and to evaluate the second term of eq. (3.98),

Ep(f |c,y)[H(p(ŷ|ĉ, f))] ≈ 1
K

K∑
k=1
H(p(ŷ|ĉ, fk), (3.102)

where {fk}Kk=1 are K functions drawn from the posterior p(f |c, y). Additional approximations
are needed to compute the entropies of the above Monte Carlo estimates, e.g. nonparametric
nearest-neighbour based method. Early experimental results suggest this approach is tractable,
however the performance heavily depends on the quality of the entropy estimator.



Chapter 4

Sparse Approximations for Deep
Gaussian Processes

4.1 Introduction

Pseudo-point based sparse approximations for Gaussian processes (GPs), as reviewed and
developed in chapters 2 and 3, have enabled practical and tractable inference and learning in
a zoo of applications, ranging from regression and classification to latent variable modelling.
However, many key challenges remain unaddressed in the existing literature. First, modelling
real-world complex datasets often requires rich and hand-designed covariance functions. It is
potentially challenging and time-consuming to design such functions without having prior
knowledge about the underlying properties and structures of the data. Second, the functional
mapping from inputs to outputs specified by a GP is Gaussian by nature, i.e. the distributions
of the function values at any set of inputs is a Gaussian distribution. As a consequence,
GPs are arguably unsuited to many use cases in which the empirical distributions of the
function values are non-Gaussian, such as data from step-like functions, audio signals or
finance time-series. Third, sparse approximations can be damaging for applications in which
calibrated predictions are critical. As the computational complexity often scales quadratically
in the number of pseudo-points M , increasing M to get a better approximation can quickly
render an intractable computational cost in practice. For these reasons, searching for a richer
probabilistic model to address these challenges and developing efficient and accurate inference
methods for such model are an active area of research.

To this end, we study a multi-layer hierarchical generalisation of GPs or Deep Gaussian
processes (DGPs) (Lawrence and Moore, 2007; Damianou and Lawrence, 2013), and investigate
whether this class of model can tackle the aforementioned limitations of the shallow (sparse)
Gaussian process models. It is well-established that a GP is equivalent to an infinitely wide
neural network with single hidden layer (Neal, 1995), and similarly, it can be shown that a
DGP is a multi-layer neural network with multiple infinitely wide hidden layers interleaved
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with finite width hidden layers. The mapping between layers in this type of network is
parameterised by a GP, and, as a result, DGPs retain useful theoretical properties of GPs
such as nonparametric modelling power and well-calibrated predictive uncertainty estimates.
In addition, DGPs employ a hierarchical structure of GP mappings and therefore are arguably
more flexible, have a greater capacity to generalise, and are potentially able to provide better
predictive performance (Damianou, 2015). This family of models is attractive as it can also
potentially discover layers of increasingly abstract data representations, in much the same
way as their deep parametric counterparts — deep neural networks, but it can also handle
and propagate uncertainty in the hierarchy.

The addition of non-linear hidden layers can also potentially overcome the practical
limitations of the shallow GP models mentioned above. First, DGPs can perform input
warping or dimensionality compression or expansion, and automatically learn to construct
a kernel that works well for the data at hand. The last GP layer in such network could be
thought of as a nonparametric output warping layer, that can scale or squash the outputs
to match the values of the observations. This is theoretically more flexible compared to
alternative hand-chosen parametric warping functions (Snelson et al., 2004). Alternatively,
you can view the initial layers as carrying out input warping before the final GP is applied.
As a result, learning in this model provides a flexible form of Bayesian kernel design. Second,
the functional mapping from inputs to outputs specified by a DGP is non-Gaussian which
is a more general and flexible modelling choice. Third, DGPs can repair the damage done
by sparse approximations to the representational power of each GP layer. For example,
pseudo datapoint based approximation methods for DGP typically trade model complexity
for a lower computational complexity of O(NLM2) where N is the number of datapoints,
L is the number of layers, and M is the number of pseudo datapoints. This complexity
scales quadratically in M whereas the dependence on the number of layers L is only linear.
Therefore, it can be cheaper to increase the representation power of the model by adding
extra layers rather than by adding more pseudo datapoints.

The focus of this chapter is approximate Bayesian learning of DGPs, which involves
inferring the posterior over the layer mappings and the hidden variables, and hyperparameter
optimisation via the marginal likelihood. In particular, this chapter unifies previously discon-
nected literature for inference and learning based on variational inference (Damianou and
Lawrence, 2013; Damianou, 2015; Hensman and Lawrence, 2014; Salimbeni and Deisenroth,
2017) and approximate expectation propagation (Bui et al., 2016), viewing them as performing
(approximate) Power EP using the same variational distribution or a common approximate
factor graph representation. This unifying perspective relies on the new approximate posterior
inference view of sparse approximations developed in chapter 2, and, similar to chapters 2
and 3, allows a spectrum of new practical approximations to be applied to DGPs. The chapter
is organised as follows: the DGP model and its related models are summarised in section 4.2;
existing approximations are reviewed and greatly extended under three perspectives: one with
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mean-field and parameterised variational distributions for the hidden variables (section 4.3)
and one with structured and explicit variational distributions for these variables (section 4.4);
and this is followed by some experiments on regression, classification and latent variable
modelling in section 4.7.

4.2 Deep Gaussian processes

We first describe DGPs, its relationship with several models discussed in chapters 2 and 3, and
briefly discuss existing literature on approximate inference and learning for DGPs. Suppose
we have a training set comprising of N D-dimensional input and observation pairs (xn, yn).
The probabilistic representation of a DGP comprising L layers can be written as follows,

p(fl|Θl) = GP(fl; 0, Kl), l = 1, · · · , L (4.1)
p(hl|fl, hl−1, σ2

l ) =
∏
n

N (hl,n; fl(hl−1,n), σ2
l ), h1,n = xn (4.2)

p(y|fL, hL−1, σ2
L) =

∏
n

N (yn; fL(hL−1,n), σ2
L) (4.3)

where hl,n is the hidden variable which is the output of the l-th GP layer corresponding
to the n-th datapoint, hl := hl,1:N , and fl if the functions in the l-th layer. For ease of
presentation, the outputs are assumed to be real-valued scalars and the observation likelhood is
Gaussian, but pointwise likelihoods of the form p(y|fL, hL−1) = ∏

n p(yn|fL(hL−1,n)) are easy
to accommodate in the approximate inference schemes described in this chapter. Additionally,
the hidden variables in the intermediate layers are assumed to single dimensional, but they
can and will generally have multiple dimensions.

More formally, we place a zero mean GP prior over the mapping fl, that is, given the
inputs to fl any finite set of function values are distributed under the prior according to a
multivariate Gaussian p(fl) = N (f ; 0, Kff ). Note that these function values and consequently
the hidden variables are not marginally normally distributed, as the inputs are random
variables. When L = 1, the model described above collapses back to GP regression. When
the inputs {xn} are unknown and random, the model becomes a DGP latent variable model,
which has been studied by Lawrence and Moore (2007); Damianou and Lawrence (2013);
Damianou (2015). Pictorially, a DGP with two hidden layers and three GP mapping layers
(L = 3) is shown in fig. 4.2. It is worth noticing the similarity between this model class
and the GPSSMs presented in chapter 3, c.f. fig. 3.1, which in turn leads to the similarity
between the approximation techniques for DGPs discussed later in this chapter and those for
GPSSMs in chapter 3.

An example of how the function mappings in a DGP might look when L = 2 and
dim(h1,n) = 2 is shown in Figure 4.1. We train a network using an approximation introduced
by Bui et al. (2016) to fit a value function of the mountain car problem (Sutton and Barto,
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1998) from a small number of noisy evaluations. The mountain car is often used as a testbed
for reinforcement learning agents, in which the agents must pick an action based on the
current location and velocity states of the car to bring it up to the top of a mountain. The
value function is particularly difficult for models such as GP regression with a standard
exponentiated quadratic kernel due to a steep value function cliff, but is reasonably handled
by a DGP with only two GP layers, as shown in 4.1. Interestingly the functions in the first
layer are fairly simple and learn to explain different parts of the input space.

Fig. 4.1 A deep GP example that has two GP mapping layers and one 2-D hidden layer.
The training output is the state value of the mountain car problem, and the training inputs
are the location and velocity of the car. For illustration purpose, we do not perform on-line
learning here, instead, we collect the function values and the states, and use them as inputs
and outputs to a standard regression task. The left graphs show latent functions in each
layer, two functions in the first layer and one in the second layer, learnt by using the proposed
approach. The right graph shows the training data [top] and the predictions of the overall
function mapping from inputs to outputs made by a GP [middle] and the DGP on the left
[bottom].

We are interested in inferring the posterior distribution over the latent function mappings
and the intermediate hidden variables, as well as obtaining a marginal likelihood estimate
for hyperparameter tuning and model comparison. For simplicity but without the lack of
generality, we take the DGP with two hidden layers described in fig. 4.2 as a running example
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for this chapter. In detail, the joint density of all variables for this DGP is as follows,

p(y, f1, f2, f3, h1, h2|X, θ) = p(f1)p(f2)p(f3)
N∏

n=1
[p(h1,n|f1, x1)p(h2,n|f2, h1,n)p(h3,n|f3, h2,n)] ,

where hl = {hl,n}Nn=1, y = {yn}Nn=1 and X = {xn}Nn=1. The marginal likelihood of the model
hyperparameters and the exact posterior of the unobserved variables are as follows,

p(y|X, θ) =
∫

df1df2df3dh1dh2p(y, f1, f2, f3, h1, h2|X) (4.4)

p(f1, f2, f3, h1, h2|y, X, θ) = p(y, f1, f2, f3, h1, h2|θ, X)
p(y|X, θ) . (4.5)

However, these quantities are analytically intractable. This is due to the non-linearity in
the hierarchy, in particular, the non-linearity of each GP mapping and the stochasticity or
randomness on the input of this mapping introduced by previous layers. As such, approximate
inference is required. We briefly summarise several existing deterministic approximations
here, and how they are currently presented and understood in the literature, before presenting
a framework in the next sections pointing out a close connection between some of these
methods.

The simplest approach is to obtain the maximum a posteriori estimate of the hidden
variables (Lawrence and Moore, 2007). However, this procedure is prone to over-fitting and
does not provide uncertainty estimates. Alternatively, a plethora of existing work, mostly
based on the variational formulation and the seminal pseudo-point sparse approximation
of Titsias (2009), can be used. Damianou and Lawrence (2013) introduced a variational
approximation over both latent functions and hidden variables, which is chosen such that
the variational free energy is both computationally and analytically tractable. Critically,
as a variational distribution over the hidden variables is used in this approach, in addition
to one over the pseudo-points, the number of variational parameters increases linearly with
the number of training datapoints which hinders the use of this method for large-scale
datasets. Furthermore, initialisation for this scheme is a known issue, even for a modest
number of datapoints. An extension of this approach that has skip links from the inputs to
every hidden layer in the network was proposed by Dai et al. (2016), based on suggestions
provided in Duvenaud et al. (2014). To combat the large number of variational parameters
required in Damianou and Lawrence (2013), Hensman and Lawrence (2014) introduce a
nested variational scheme that only requires a variational distribution over the pseudo-
outputs. Similarly, a recent work by Salimbeni and Deisenroth (2017) attempt to sidestep the
parameter scaling problem of Damianou and Lawrence (2013) by a doubly stochastic variational
approach. However, both approaches of Hensman and Lawrence (2014) and Salimbeni and
Deisenroth (2017) are difficult to understand, as the forms of the variational approximations
were not explicitly written in the original presentations. Two notable exceptions that do
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not use variational inference are methods based (approximate) Power EP and the FITC
approximation of Snelson and Ghahramani (2006), proposed by Bui et al. (2015, 2016).
However, as pointed out in chapter 2, the presentation of these techniques based on the
FITC method is philosophically troubling as FITC approximates each original GP layer by a
parametric layer with finite capacity rather than being an approximation that is made at
inference time. The complexity of the methods mentioned above is typically O(NLM2) for
computation, and O(NL + LM2) or O(LM2) for memory, for methods that use and do not
use a parameterised variational distributions over the hidden variables, respectively.

A special case of DGPs when L = 2 and the sole hidden layer h1 is only one-dimensional
is warped GPs (Snelson et al., 2004; Lázaro-Gredilla, 2012). Lázaro-Gredilla (2012) proposed
a variational approach, in a similar spirit to Titsias (2009) and Damianou and Lawrence
(2013) to learn the latent functions. In contrast, the latent function in the second layer is
assumed to be deterministic and parameterised by a small set of parameters by (Snelson
et al., 2004), which can be learnt by maximising the analytically tractable marginal likelihood.
However, the performance of warped GPs is often similar to a standard GP, most likely due
to the narrow bottleneck that results from using a one-dimensional hidden layer.

Having summarised several existing approaches to inference and learning in DGPs, we
will provide a review of Damianou and Lawrence (2013) and an extension using Power EP, an
alternative presentation for the variational approaches proposed by Hensman and Lawrence
(2014) and Salimbeni and Deisenroth (2017), a clearer exposition of the approaches proposed
by Bui et al. (2015, 2016) based on (approximate) Power EP, and a unifying perspective
relating these methods. We attempt to visualise their relationship and link to sections
describing each method in table 4.1.

4.3 Approximate inference with parameterised approxima-
tions for hidden variables

The factor graph representation of the running regression example, shown in fig. 4.2(A),
bears a resemblance to the factor graph of a GPSSM in fig. 3.1(A). Therefore, much of
the approximation techniques for GPSSMs described in chapter 3 can be transfered and
adapted to DGPs. In this section, we will discuss two structured approximations that uses
parameterised Markovian and mean-field Gaussian variational distributions for the hidden
variables, similar to that discussed in chapter 3. In particular, the original factor graph of
the DGP is approximated by a structured factor graph, in which each original difficult factor
involving multiple is broken up into a product of factors, each of which only touches one
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Fig. 4.2 Factor graphs showing a DGP with two hidden layers and three GP mapping layers when the inputs are observed (A), and an
approximation to the original factor graph that has factors linking neighbouring hidden variables (B), and an approximation to the
original factor graph that assumes a mean-field factorisation between the hidden variables [C].
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Table 4.1 Different approximations discussed in this chapter, categorised by the approximate posterior and the inference method used.
In all cases, q(ul) is assumed Gaussian, q(ul) = N (u; ml, Sl).

Sec. q(hn) Notes and references

4.3 Gaussian, diagonal covariance
see fig. 4.2(C)

VFE: q(u) collapsable, Damianou and Lawrence (2013)
PEP with α→ 0 gives VFE of Damianou and Lawrence (2013)

4.3 Gaussian, tri-block-diagonal precision
see fig. 4.2(B)

VFE: q(u) collapsable, inspired by McHutchon (2014)
Power EP with α→ 0 gives VFE

4.4 q(hn|f1:L) = ∏L−1
l=1 p(hl,n|fl, hl−1,n)

see section 4.4.1 for VFE and section 4.4.2 for Power EP
Salimbeni and Deisenroth (2017) used VFE and simple MC

Bui et al. (2015, 2016) used PEP with α = 1 and moment maching
PEP with α→ 0 gives VFE

4.5 explicit q(hl,n|ul, hl−1,n) VFE, Hensman and Lawrence (2014)
unclear how to use this for Power EP
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variable or two neighbouring variables as follows,

p(y, f1, f2, f3, h1, h2|X, θ) = p(f1)p(f2)p(f3)
N∏

n=1

[
p(h1,n|f1, xn)

p(h2,n|f2, h1,n)

p(h3,n|f3, h2,n)
]
, (4.6)

qMarkovian(y, f1, f2, f3, h1, h2|X, θ) ∝ p(f1)p(f2)p(f3)
N∏

n=1

[
β1,n(h1,n)t1,n(f1)

β2,n(h1,n, h2,n)t2,n(f2)

β3,n(h2,n)t3,n(f3)
]
, (4.7)

qmean-field(y, f1, f2, f3, h1, h2|X, θ) ∝ p(f1)p(f2)p(f3)
N∏

n=1

[
β1,n(h1,n)t1,n(f1)

γ2,n(h1,n)β2,n(h2,n)t2,n(f2)

γ3,n(h2,n)t3,n(f3)
]
, (4.8)

where p(.), qMarkovian(.), and qmean-field(.) are the exact joint density and approximate joint
densities with Markovian and mean-field approximations for the hidden variables, respectively.
Note that we also employ pseudo-points approximations for each GP here, that is each t

factor is assumed to involve only a small number of function values u [pseudo-outputs] at
some pseudo-inputs, as follows,

t1,n(f1) = t1,n(u1), t2,n(f2) = t2,n(u2), t3,n(f3) = t3,n(u3). (4.9)

The approximate posteriors with Markovian and mean-field approximations for the hidden
variables are pictorially depicted in fig. 4.2(B) and fig. 4.2(C), respectively. These illustrations
clearly show the local nature of this approximation. However, a global form of the approximate
posteriors can be formed by grouping the factors that share a common variable or a common
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set of variables:

qmean-field(.) ∝ p(f1, ̸=u1 |u1)p(f2, ̸=u2 |u2)p(f3, ̸=u3 |u3)×
q(u1)︷ ︸︸ ︷[

p(u1)
N∏

n=1
t1,n(u1)

] q(u2)︷ ︸︸ ︷[
p(u2)

N∏
n=1

t2,n(u2)
] q(u3)︷ ︸︸ ︷[

p(u3)
N∏

n=1
t3,n(u3)

]
×

N∏
n=1

[
β1,n(h1,n)γ2,n(h1,n)

]︸ ︷︷ ︸
q(h1,n)

N∏
n=1

[
β2,n(h2,n)γ3,n(h2,n)

]︸ ︷︷ ︸
q(h2,n)

, (4.10)

qMarkovian(.) ∝ p(f1, ̸=u1 |u1)p(f2, ̸=u2 |u2)p(f3, ̸=u3 |u3)×
q(u1)︷ ︸︸ ︷[

p(u1)
N∏

n=1
t1,n(u1)

] q(u2)︷ ︸︸ ︷[
p(u2)

N∏
n=1

t2,n(u2)
] q(u3)︷ ︸︸ ︷[

p(u3)
N∏

n=1
t3,n(u3)

]
×

N∏
n=1

[
β1,n(h1,n)β2,n(h1,n, h2,n)β3,n(h2,n)

]︸ ︷︷ ︸
q(h1,n,h2,n)

, (4.11)

It is clear from the equations above that both appoximations impose a structured approxima-
tion for the latent GPs, in a similar fashion to that in GP regression, classification and state
space models. In addition, both approximations assumes a mean-field structure between the
latent functions and the hidden variables. The key difference, however, is that eq. (4.10) posits
a mean-field posterior [Gaussian with a diagonal covariance matrix] for the hidden variables,
whilst eq. (4.11) explicitly encodes the pairwise interactions between neighbouring hidden
variables in a Markovian posterior [Gaussian with a tri-diagonal precision matrix]. These
approximate posteriors can be used in many deterministic approximation shemes such as
variational inference or power expectation propagation, in a similar fashion to those discussed
in chapter 3. In particular, the approximate factors are typically assumed Gaussian, and their
means and covariances are parameterised and updated by using either the Power EP iterative
procedure or by optimising the variational free-energy. When the variational free-energy
approach with the appoximate posterior qmean-field(.) is used, we arrive at the approach of
Damianou and Lawrence (2013). Similar to the GPSSM case, it can be shown that for the
variational case, the optimal form for q(h) = q(h1, h2) is Markov and non-Gaussian, and the
optimal form for q(u) is conveniently a Gaussian that depends on q(h). This leads to an
analytic collapsed bound that only depends on variational parameters parameterising q(h).
The collapsed bound, however, is not amenable to stochastic optimisation. Alternatively,
the iterative Power EP procedure can be used to update the factors, or the approximate
Power EP energy can be minimised to obtain the approximate posterior when the factors
are deliberately tied. As the algorithmic and computational procedures of these schemes, as
well as additional approximations to enable tractability such as Moment Maching or simple
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Monte Carlo, have been described at length in chapter 3, we refer interested readers to this
chapter for more details.

One disadvantage of this class of approximate posterior is the need to parameterise the
variational distribution over the local hidden variables (h1 and h2 in the running example). A
clear consequence is the memory complexity that scales linearly in the number of datapoints,
which is burdensome for large datasets. More importantly, initialisation of these distributions
is problematic as numerical instability can arise if their initial parameters and those of the
latent GPs are mismatched. Techniques such as inference networks can be useful to reduce
the complexity, however, they do not resolve the initialisation issue.

This limitation begs consideration of whether the intermediate hidden variables can be
integrated out so they can be avoided in the inference process. It can be shown that the
intermediate Gaussian noise can be merged into the kernel of the GP layer, which means
the local intermediate variables can be integrated out to arrive at a collapsed model, in
which there are only global variables. However, the separation of the local variables and the
global variables are key for the Titsias’ trick (Titsias, 2009), as discussed in chapter 2, to
be applicable. This rules out the above option of marginalising out the hidden variables.
Fortunately, alternative variational approximations can be carefully chosen such that no
explicitly parameterised forms for these variables are needed. We will discuss several choices
of such approximations and how to use them for Power EP and variational inference in the
next section.

4.4 Approximate inference with explicit conditional approxi-
mations for hidden variables

As described above, an approximation for the latent functions and the intermediate hidden
variables can be used within the Power EP procedure or the variational inference scheme, to
sidestep the intractabilies in inference and learning. However, a parameterised approximation
over the hidden variables is a memory intensive constraint. In addition, a mean-field
assumption between the latent functions and the hidden variables is arguably limited, as
the hidden variables are the noisy function evaluations in the generation process, resulting
in a potentially strong coupling in the posterior. In this section, we relax this mean-field
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constraint and assume an explicit conditional distribution for the hidden variables as follows,

q(·) ∝ p(f1, ̸=u1 |u1)p(f2, ̸=u2 |u2)p(f3,̸=u3 |u3)×
q(u1)︷ ︸︸ ︷[

p(u1)
N∏

n=1
t1,n(u1)

] q(u2)︷ ︸︸ ︷[
p(u2)

N∏
n=1

t2,n(u2)
] q(u3)︷ ︸︸ ︷[

p(u3)
N∏

n=1
t3,n(u3)

]
×

N∏
n=1

p(h1,n; f1, xn)
N∏

n=1
p(h2,n|f2, h1,n). (4.12)

In fact, this approximation retains in all layer the conditional distributions that map from the
previous hidden variable through a latent function to the next hidden variable, {p(h1,n; f1,

xn), p(h2,n|f2, h1,n)}Nn=1, except for the last layer, in which the conditional distribution is the
likelihood model for the data, {p(yn|f3, h2,n)}Nn=1. This can be seen by comparing the exact
joint density in eq. (4.6) with eq. (4.12). At this point, interested readers might find this
approximate posterior rather strange, since there are no explicit approximations for h1,n and
h2,n, but instead, the approximation for each hidden variable are completely specified by the
approximations for the GP at the current layer and the hidden variable at the previous layer,
as p(h1,n; f1, xn) and p(h2,n|f2, h1,n) are not learnt. It is also not clear how each individual
term in the joint density is approximated.

However, in this regression/classification setting, the ultimate task is to obtain good
predictions at test time. The quantity required to obtain such a prediction is the approximate
posterior over the GP mappings and not the hidden variables of the training points. It
is therefore sensible to choose an approximation, like one chosen here, that devotes its
approximation effort to the latent non-linear mappings, while providing an approximation
for the training hidden variables for free. More importantly, the approximation discussed in
this section addresses two major concerns when using the parameterised form in eqs. (4.10)
and (4.11),

• the posterior dependencies between the hidden variables, and between the hidden
variables and the latent functions are strictly enforced by the explicit conditional
densities, as opposed to the mean-field assumptions in eqs. (4.10) and (4.11), and,

• there are no explicit factors or global approximations for the hidden variables that
need to be parameterised and updated. This is a huge memory saving for big datasets,
and at the same time, mitigates the initialisation issue that arose when using the
parameterised Gaussian marginals in eqs. (4.10) and (4.11).

This approximation can now be understood to have been used for variational inference by
Salimbeni and Deisenroth (2017), and (approximate) EP by Bui et al. (2015, 2016). Though
the connection between these methods is obvious in hindsight given the explicit form of the
approximate posterior, it was poorly understood due to the difference in the presentation
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styles in the original publications and the fact that FITC was not understood as approximate
inference. We will now detail this connection and show that these schemes are special cases
of a more general Power EP framework that uses the same posterior approximation.

4.4.1 The VFE approach of Salimbeni and Deisenroth (2017)

In this section, we take the global view of the approximate posterior in eq. (4.12),

q(f1, f2, f3, h1, h2) = p(f1, ̸=u1 |u1)p(f2,̸=u2 |u2)p(f3,̸=u3 |u3)q(u1)q(u2)q(u3)×
N∏

n=1

[
p(h1,n; f1, xn)p(h2,n|f2, h1,n)

]
. (4.13)

The joint density of the model in eq. (4.6) can be rewritten as follows,

p(y, f1, f2, f3, h1, h2|X, θ) = p(f1, ̸=u1 |u1)p(f2, ̸=u2 |u2)p(f3,̸=u3 |u3)p(u1)p(u2)p(u3)×
N∏

n=1

[
p(h1,n|f1, xn)p(h2,n|f2, h1,n)p(yn|f3, h2,n)

]
. (4.14)

Following the standard variational Bayesian approach, we can arrive at the following negative
variational free-energy, which is a lower bound of the log marginal likelihood,

Fvfe(·) =
∫

f1,f2,f3,h1,h2
q(f1, f2, f3, h1, h2) log p(y, f1, f2, f3, h1, h2|X, θ)

q(f1, f2, f3, h1, h2) . (4.15)

The gap between the negative free-energy and the log marginal likelihood is the KL divergence
from the exact posterior to the variational approximation,

Fvfe(·) = log p(y|X, θ)−KL(p(f1, f2, f3, h1, h2|X, y, θ)||q(f1, f2, f3, h1, h2)), (4.16)

which means the negative free-energy can be maximised w.r.t. the approximate posterior
and the model hyperparameters, with a guarantee that the approximate posterior will get
closer to the exact posterior as measured by the KL divergence. Importantly, the form of the
approximation chosen above admits a tractable free energy as follows,

Fvfe(·) = −
3∑

l=1
KL(q(ul)||p(ul)) +

N∑
n=1

〈
log p(yn|f3, h2,n)

〉
q(f1,f2,f3,h1,n,h2,n)︸ ︷︷ ︸

Fvfe,2,n

. (4.17)

Note that the greatly simplified form above is the result of substituting the approximate
posterior in eq. (4.13) and the joint density in eq. (4.14) to the negative free-energy in eq. (4.15),
and cancelling out identical terms in the log. As in previous chapters and following what is
typically done in the literature, we posit a Gaussian form for q(ul), q(ul) = N (ul; ml, Sl).
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This allows analytic computation of the KL terms in eq. (4.17) since p(ul) is also a Gaussian
density. Notice further that the second term in eq. (4.17) decomposes as a sum of independent
terms, one for each training instance, and that the data likelihood in the output layer only
touches the last hidden variable h2,n and the last function mapping f3, we can rewrite this
term as,

Fvfe,2,n =
〈

log p(yn|f3, h2,n)
〉

q(f3)q(h2,n), (4.18)

where q(f3) = p(f3, ̸=u3 |u3)q(u3) and

q(h2,n) =
∫

h1,n,f1,f2
p(h2,n|f2, h1,n)p(f2,̸=u2 |u2)q(u2)p(h1,n|f1, xn)p(f1,̸=u1 |u1)q(u1). (4.19)

The focus is now on how to tractably compute the marginal q(h2,n) in eq. (4.19) and the
expectation of the log data likelihood in eq. (4.18). Due to the non-linearity in the network
q(h2,n) is in general non-Gaussian, which in turn results in an analytically intractable
expectation in eq. (4.18). However, there are efficient procedures to approximate these
quantities. The strategy is to approximate the integral in eq. (4.19) in a sequential order,
from the input layer to the second last layer. In detail, notice f1 can first be integrated out
exactly,

q(h1,n) =
∫

f1
p(h1,n|f1, xn)p(f1,̸=u1 |u1)q(u1) = N (h1,n; mh1,n , vh1,n), (4.20)

where mh1,n = knu,1K−1
uu,1m1,

vh1,n = knn,1 − knu,1K−1
uu,1kun,1 + knu,1K−1

uu,1S1K−1
uu,1kun,1 + σ2

1,

and the subscript 1 denotes the quantities in the first layer, e.g. Kuu,1 is the covariance
between the first layer’s pseudo-points. Note that q(h1,n) is simply the predictive distribution
at the input xn, given the posterior distribution of the latent GP grounded on the pseudo-
points, and that knn,1 and knu,1 are evaluated at the input xn. Similarly, we can integrate
f2 out analytically for a given deterministic h1,n,

q(h2,n|h1,n) =
∫

f2
p(h2,n|f2, h1,n)p(f2,̸=u2 |u2)q(u2) = N (h2,n; mh2,n|h1,n

, vh2,n|h1,n
),

where mh2,n|h1,n
= knu,2K−1

uu,2m2,

vh2,n|h1,n
= knn,2 − knu,2K−1

uu,2kun,2 + knu,2K−1
uu,2S2K−1

uu,2kun,2 + σ2
2,

and knn,2 and knu,2 are evaluated at the deterministic hidden value h1,n. The above results
simplify eq. (4.19) given both f1 and f2 have been exactly marginalised out,

q(h2,n) =
∫

h1
q(h2,n|h1,n)q(h1,n). (4.21)
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It is perhaps unsurprising that the integral above is exactly the central question we asked
earlier in chapter 3: how to propagate a Gaussian distribution over the input through a GP
posterior. The difficulty originates from the non-linearity of the GP predictive distribution
w.r.t. the input, and the randomness in the input. As a result, q(h2,n) is a non-trivial mixture
of an infinite number of Gaussian densities, which can have heavy-tails and multiple modes.
At this point, we can reuse a suite of approximation methods discussed in section 3.4.1 to
get an approximate q(h2,n). We will review two approximations: simple Monte Carlo and
moment matching1.

Nested simple Monte Carlo

The most naïve approach to approximate q(h2,n) is by a mixture of a finite number of
Gaussian densities,

q(h2,n) ≈ 1
R

R∑
r=1

q(h2,n|h1,n,r) = 1
R

R∑
r=1
N (h2,n; mh2,n|h1,n,r

, vh2,n|h1,n,r
), (4.22)

where {h1,n,r}Rr=1 is a set of R independent samples, drawn from q(h1,n). While this approxi-
mation is unbiased for a finite R and exact as R→∞, it can be poor when R is small and
the dimension of h1,n is large. In the case when there are more than three GP layers, this
mixture of Gaussians can be approximately propagated through another GP posterior using
the same technique. This means the samples are now drawn from a mixture of uniformly
weighted Gaussian distributions (instead of from a single Gaussian), and propagated through
the GP mapping to form another mixture of Gaussians.

Given the mixture approximation to q(h2,n), the expectation in eq. (4.18) can be approxi-
mated by,

Fvfe,2,n =
〈

log p(yn|f3, h2,n)
〉

q(f3)q(h2,n) ≈
1
R

R∑
r=1

〈
log p(yn|f3, h2,n)

〉
q(f3)q(h2,n|h1,n,r). (4.23)

For a Gaussian observation model and for certain choices of the covariance function for the
last GP mapping, this is available in closed-form2. However, it is analytically intractable
for general likelihoods and requires additional approximations, e.g. another simple Monte
Carlo integration (Gal et al., 2015). When the simple Monte Carlo method is used at this
step, in addition to the Monte Carlo approximation for q(h2,n), Salimbeni and Deisenroth
(2017) called the overall method doubly stochastic due to the two sources of stochasticity in
the estimation procedure.

1The linearisation approximation discussed in chapter 3 can be employed in this case too, but we suspect
this approximation is poor for deep networks, as demonstrated when a nested version of this scheme performed
poorly for GPSSM prediction in chapter 3.

2The approximate expectation is now a sum of expectations, each of which is the expectation computation
required for variational inference in GPLVMs (Titsias and Lawrence, 2010).
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One key implementation challenge is how to obtain the gradient of the estimated ex-
pectation w.r.t. the variational parameters (such as ml and Sl) and in particular, how to
perform the backward pass through the Monte Carlo procedures. Fortunately, this can be
addressed by employing the reparameterisation trick (Kingma and Welling, 2014; Salimans
and Knowles, 2013), which is arguably the main factor leading to the recent revival of Monte
Carlo based variational inference.

Nested Gaussian projection or moment matching

For certain choices of covariance functions in the network, it is possible to use an efficient
and accurate approximation which propagates a Gaussian through the first layer of the
network and projects this non-Gaussian distribution back to a moment matched Gaussian
before propagating through the next layer and repeating the same steps, hence we call
this approximation nested Gaussian projection. However, in the running example in this
chapter, only one step of this approximation is needed, as illustrated in fig. 3.2 and detailed
in chapter 3. We review the key results here.

Although the exact marginal q(h2,n) is non-Gaussian and non-analytic, its mean and
covariance can be obtained using the law of iterated conditionals (Girard et al., 2003;
Deisenroth and Mohamed, 2012) as follows,

mh2,n = Eq(h1,n)[mh2,n|h1,n
]

vh2,n = Eq(h1,n)[vh2,n|h1,n
] + varq(h1,n)[mh2,n|h1,n

]

Substituting the mean and covariance of q(h1,n) in eq. (4.20) into the above results gives,

mh2,n = ⟨A2,n⟩q(h1,n)m2, (4.24)
vh2,n = ⟨B2,n⟩q(h1,n) + ⟨A2,n[S2 + m2m⊺

2]A⊺
2,n⟩q(h1,n) + σ2

2 −m2
h2,n

. (4.25)

where A2,n = knu,2K−1
uu,2 and B2,n = knn,2 − knu,2K−1

uu,2kun,2. The equations above require
the expectations of the kernel matrices under a Gaussian distribution over the inputs, which
are analytically tractable for widely used kernels such as exponentiated quadratic, linear or
a more general class of spectral mixture kernels (Titsias and Lawrence, 2010; Wilson and
Adams, 2013). We approximate q(h2,n) by a Gaussian distribution with the same mean and
covariance, q(h2,n) ≈ q̃(h2,n)N (h2,n; mh2,n , vh2,n). In addition, this approximation above can
be improved for networks that have multidimensional intermediate variables, by using a
Gaussian with a non-diagonal covariance matrix (Deisenroth and Mohamed, 2012). This is,
however, more computationally expensive so the diagonal approximation will be used here
and for the rest of this chapter.
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Given the moment-matched Gaussian approximation q̃(h2), eq. (4.18) can be approximated
by substituting the Gaussian approximation in place of q(h2),

Fvfe,2,n =
〈

log p(yn|f3, h2,n)
〉

q(f3)q(h2,n) ≈
〈

log p(yn|f3, h2,n)
〉

q(f3)q̃(h2,n). (4.26)

The computation of the resulting approximate expectation is similar to that using the simple
Monte Carlo approximation [eq. (4.23)]. This means eq. (4.26) can be computed analytically
for certain choices of covariance functions and observation models, or can be approximated
by simple Monte Carlo integration.

4.4.2 The Power EP approach

We have discussed the variational free-energy approach using the posterior approximation in
eq. (4.12), for inference and learning in DGPs. As done in chapters 2 and 3, we will investigate
the use of the same posterior approximation for Power EP, and etablish the connection to
VFE. A key difference compared to the VFE approach is that the local view of eq. (4.12) is
used,

q(·) ∝ p(f1, ̸=u1 |u1)p(f2, ̸=u2 |u2)p(f3, ̸=u3 |u3)p(u1)p(u2)p(u3)×
N∏

n=1

[
t1,n(u1)t2,n(u2)t3,n(u3)p(h1,n; f1, xn)p(h2,n|f2, h1,n)

]
, (4.27)

where the product t1,n(u1)t2,n(u2)t3,n(u3)p(h1,n; f1, xn)p(h2,n|f2, h1,n) ≜ ĝn could be thought
of as an approximation to p(h1,n; f1, xn)p(h2,n|f2, h1,n)p(yn; f3, h2,n) ≜ gn in eq. (4.6). The
standard iterative Power EP procedure can now be employed, which involves looping through
the dataset multiple times and performing the following steps: 1. remove a fraction of ĝn

from the approximate posterior to form the cavity distribution, 2. incorporate a fraction
of the exact factor gn the cavity to form the tilted distribution, and moment match the
approximate posterior to this distribution, and 3. update the approximate factor ĝn using
the new approximate posterior and the cavity distribution. We choose a Gaussian form for
each approximate factor ĝn, and next discuss how to deal with these steps given a training
datapoint (xn, yn), for a general α hyperparameter of Power EP.

Deletion step

The cavity distribution is formed by removing a fraction of ĝn from q(.),

qcav,n(·) ∝ q(·)/ĝα
n ∝ p(f1, ̸=u1 |u1)p(f2,̸=u2 |u2)p(f3, ̸=u3 |u3)qcav,n(u1)qcav,n(u2)qcav,n(u3)×[

p(h1,n; f1, xn)p(h2,n|f2, h1,n)
]1−α N∏

i=1,i ̸=n

[
p(h1,i; f1, xi)p(h2,i|f2, h1,i)

]
,
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where qcav,n(ul) ≜ p(ul)t1−α
l,n (ul)

∏N
i=1,i ̸=n tl,i(ul) = N (ul; mcav,l, Scav,l).

Moment matching and update steps

In the ideal case, the approximate posterior can be found by minimising the KL divergence
from it to the exact posterior, KL(p(·|y, X)||q(·)). However, this is intractable. Instead, the
Power EP procedure replaces the exact posterior by a surrogate posterior such that the
resulting optimisation is tractable. This surrogate posterior, which is often called the tilted
distribution, is formed by by multiplying the cavity distribution with a fraction of the exact
factor, as follows,

q̃n(·) = qcav,n(·)gα
n = p(f1, ̸=u1 |u1)p(f2, ̸=u2 |u2)p(f3,̸=u3 |u3)qcav,n(u1)qcav,n(u2)qcav,n(u3)×[

p(h1,n; f1, xn)p(h2,n|f2, h1,n)pα(yn; f3, h2,n)
] N∏

i=1,i ̸=n

[
p(h1,i; f1, xi)p(h2,i|f2, h1,i)

]
.

This surrogate posterior is then used to refine the approximate posterior, by minimising
the KL divergence from the approximate posterior to the tilted distribution, KL(q̃n(·)||q(·)).
This minimisation problem is equivalent to matching the moments of q(·) to those of q̃n(·).
Computing the moments of q̃n(·) is, however, analytically intractable as it involves propagating
Gaussian processs through a non-linear hierarchy, resulting in a complex distribution over all
random variables in the network. Fortunately, the structure of the approximate posterior
comes to the rescue. As shown in chapter 2, since the approximate posterior is grounded on
the pseudo-points, it is therefore sufficient to match zeroth, first and second order moments
at the pseudo-points in the approximate posterior to that of the tilted distribution. This
central result greatly simplifies the required computation and, since {q(ul)}Ll=1 are assumed
Gaussian, allows the following shortcut to obtain the mean and covarariance of the new
approximate posterior at the pseudo-points,

mnew
l = m\n

l + S\n
l

d log Z̃n

dm\n
l

, (4.28)

Snew
l = S\n

l − S\n
l

[d log Z̃n

dm\n
l

(d log Z̃n

dm\n
l

)⊺

− 2d log Z̃n

dS\n
l

]
S\n

l , (4.29)

where Z̃n is is normalising constant of q̃n(·). Having the new mean and covariance, the
approximate factor can be trivially updated by dividing the cavity distribution from the
new approximate posterior. The inference scheme therefore reduces to evaluating Z̃n and its
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gradient w.r.t. the cavity parameters. Note that,

log Z̃n = log
∫

f1,f2,f3,h1,h2
q̃n(f1, f2, f3, h1, h2)

= log
∫

f1,f2,f3,h1,n,h2,n

qcav,n(f1, f2, f3)
[
p(h1,n; f1, xn)p(h2,n|f2, h1,n)pα(yn; f3, h2,n)

]
= log

〈
pα(yn|f3, h2,n)

〉
qcav,n(f3)q̃(h2,n), (4.30)

where qcav,n(fl) = p(fl,̸=ul
|ul)qcav,n(ul) and

q̃(h2,n) =
∫

h1,n,f1,f2
p(h2,n|f2, h1,n)qcav,n(f2)p(h1,n|f1, xn)qcav,n(f1). (4.31)

Critically, the computation procedure required for eqs. (4.30) and (4.31) is identical to that
required for the VFE approach (eqs. (4.18) and (4.19)). In particular, the tilted marginal,
q̃(h2,n), is analytically intractable for non-linear networks, but can be efficiently approximated
by nesting simple Monte Carlo or Gaussian projection steps [see the previous section and
chapter 3 for more details]. And similarly, the expectation in eq. (4.31) can be approximated
by another layer of Gaussian projection or simple Monte Carlo.

When the Gaussian projection is used at each layer, computing log Z̃n involves passing
an approximate Gaussian distribution from the input layer to the output layer. As the mean
and variance of the Gaussian approximation in each intermediate layer can be computed
analytically, their gradients with respect to the mean and variance of the input distribution,
as well as the cavity parameters of the current layers are also available. Since we require
the gradients of the approximation to log Z̃n, we need to store these results in the forward
propagation step, compute the approximate log Z̃n and its gradients at the output layer
and use the chain rule to pass the gradient information in the backward direction from the
output layer to the input layer. This is reminiscent of the backpropagation algorithm in
standard parametric neural networks, hence called the probabilistic backpropagation algorithm
(Hernández-Lobato and Adams, 2015).

A particular case of the above procedure when α = 1 has been described in (Bui et al.,
2015, 2016), however the presentation and reinterpretation in this chapter allow other α

values beyond α = 1 to be used in the same tractable algorithmic procedure. Importantly,
as α → 0, the VFE approach presented in the previous section is recovered. This result
establishes the connection between the approached presented by Bui et al. (2015, 2016) and
Salimbeni and Deisenroth (2017) as special cases of the same Power EP procedure, with
different α values and different approximate uncertainty propagation methods in the network
(α = 1 and Gaussian projection, and α→ 0 and simple Monte Carlo, respectively).
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Approximate marginal likelihood and hyperparameter optimisation

The Power EP procedure is not guaranteed to converge in general, but if it does, the fixed
points lie at the stationary points of the Power EP energy, and the negative of which can be
used as an approximation to the log marginal likelihood,

log p(y) ≈ Fpep =
L∑

l=1

[
Φ[q(ul)]− Φ[p(ul)]

]
+ 1

α

N∑
n=1

(
log Z̃n +

L∑
l=1

[
Φ[q\n(ul)]− Φ[q(ul)]

])
,

where Φ[N (x; m, S)] = 1
2mS−1m⊺ + 1

2 log |S|. As α→ 0, the Power EP energy tends to the
variational free-energy. However, unlike the variational free-energy, there is no guarantee for
the Power EP energy to be an upper bound of the negative marginal likelihood for a general
α. This is a caveat when using the Power EP energy for hyperparameter optimisation, as
a lower bound when minimised can go arbitrarily small. However, optimisation is found
to often work well in practice, and the energy is often close to the exact negative marginal
likelihood in many models.

As log Z̃n is already required for the moment matching step in the Power EP iterative
procedure, the approximate marginal likelihood above and its gradients w.r.t. the model
hyperparameters can be computed at no additional cost. The overall computational complexity
is O(NLM2). Furthermore, Power EP requires the approximate factors to be stored in
memory, which has a cost of O(NLM2) for DGPs as we need to store the mean and the
covariance matrix for each factor.

Direct EP energy minimisation with a tied factor constraint

In order to reduce the expensive memory footprint of Power EP, the data factor can be tied.
That is the posterior of the pseudo-points is approximated by q(ul) ∝ p(ul)t(ul)N , where the
factor t(u) could be thought of as an average data factor that captures the average effect
of a likelihood term on the posterior. Approximations of this form were recently used in
the Stochastic EP algorithm (Li et al., 2015; Dehaene and Barthelmé, 2015) and although
seemingly limited, in practice were found to perform almost as well as full Power EP while
significantly reducing Power EP’s memory requirement, from O(NLM2) to O(LM2) in our
case.

The original Stochastic EP work devised modified versions of the EP updates appropriate
for the new form of the approximate posterior. Originally Bui et al. (2015) applied this
method to DGPs. However, Bui et al. (2016); Hernández-Lobato et al. (2016) later found an
alternative approach that has superior performance, which is to optimise the Power EP energy
directly to refine the approximating factors. The benefit is that the approximate Power EP
energy can be jointly optimised for the hyperparameters, including the pseudo-inputs, at
the same time. Normally, optimisation of the EP energy requires a double-loop algorithm,
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which is computationally inefficient, however the use of tied factors simplifies the approximate
marginal likelihood and allows direct optimisation. The approximate marginal likelihood
becomes,

Fpep ≈
L∑

l=1

[
Φ[q(ul)]− Φ[p(ul)]

]
+ 1

α

N∑
n=1

(
log Z̃n +

L∑
l=1

[
Φ[q\1(ul)]− Φ[q(ul)]

])
,

=
L∑

l=1

[
(1− N

α
)Φ[q(ul) + N

α
Φ[q\1(ul)]− Φ[p(ul)]

]
+ 1

α

N∑
n=1

log Z̃n, (4.32)

since the cavity distribution q\n(ul) ∝ q(u)/t̃α
n(ul) = q(ul)/tα(ul) = q\1(ul) is the same for

all training points. This elegantly removes the need for a double-loop algorithm, since we
can posit a form for the approximate posterior and optimise the above approximate marginal
likelihood directly. However, it is important to note that, in general, optimising this objective
will not give the same solution as optimising the full negative Power EP energy. Despite
this difference, as α → 0, the above objective still becomes the exact negative variational
free-energy in eq. (4.17).

Stochastic optimisation for scalable training

The propagation and moment-matching as described above costs O(LM2) and needs to be
repeated for all datapoints in the training set in batch mode, resulting in an overall complexity
of O(NLM2). Fortunately, the last term of the objective in the Power EP energy is a sum of
independent terms, i.e. its computation can be distributed, resulting in a substantial decrease
in computational cost. Furthermore, the objective is suitable for stochastic optimisation. In
particular, an unbiased noisy estimate of the objective and its gradients can be obtained
using a minibatch of training datapoints,

Fpep =
L∑

l=1

[
(1− N

α
)Φ[q(ul) + N

α
Φ[q\1(ul)]− Φ[p(ul)]

]
+ 1

α

N

|B|

|B|∑
b=1

log Z̃b,

where |B| denotes the minibatch size.

4.5 Alternative posterior approximations

Selecting a rich class of approximate posteriors that can be used for a wide class of approxima-
tion methods and that enables tractable inference and learning in DGPs is an active area of
research. We have described two approximation families, one with mean-field parameterised
Gaussian approximations and one with an explicit conditional distribution for the hidden
variables, and how to use them for inference and learning using variational inference and
Power EP. A clear advantage of the approximation with an explicit conditional distribution
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shown in section 4.4 is that the posterior correlation between the latent functions and the
latent variables is explicitly specified, as opposed to the mean-field assumption in section 4.3.

Alternative approximate posteriors that enable the same flexibility, while maintaining the
same computational and memory complexities are possible. In this section, we review one
such choice, a nested variational approach by Hensman and Lawrence (2014). The original
presentation in this paper was rather convoluted and it is not intermediately clear what
variational approximation was chosen, nor indeed whether the approach can be interpreted
in terms of a a single variational distribution. In this section, we attempt to summarise this
approach using a more standard route which shows a clear connection to the variational
approximations and inference schemes reviewed in the previous sections. In particular, we
interpret this approach as a variational free-energy scheme with a particular choice for the
variational approximation that possesses an explicit conditional distributions for the hidden
variables as follows,

q(f1, f2, f3, h1, h2) = q(f1)q(f2)q(f3)
N∏

n=1
q(h1,n|u1)q(h2,n|u2). (4.33)

Note that q(fl) = p(fl,̸=ul
|ul)q(ul), and q(u1), q(u2) and q(u3) are assumed Gaussian and

will be parameterised and optimised. In addition, q(h1|u1), q(h2|u2) are explicitly defined
and depend on q(u1) and q(u2) in a way that the resulting variational free-energy is simple
to compute. Substituting the above distribution into the standard variational lower bound of
the marginal likelihood leads to,

Fvfe = Fvfe,1 +
N∑

n=1
Fvfe,2,n,

where Fvfe,1 −KL(q(u1, u2, u3)||p(u1, u2, u3)),

Fvfe,2,n =
〈
− log q(h1,n|u1)− log q(h2,n|u2) + ⟨log p(yn|f3, h2,n)⟩p(f3,̸=u3 )

+ ⟨log p(h2,n|f2, h1,n)⟩p(f2,̸=u2 ) + ⟨log p(2, n|f1, x)⟩p(f1,̸=u1 )

〉
q(u1,u2,u3,h1,n,h2,n)

First, we can analytically compute the expected log likelihood for each layer in the equation
above,

E1 = ⟨log p(h1,n|f1, x)⟩p(f1,̸=u1 ) = logN (h1,n; A1,nu1, σ2
1)− 1

2σ2
1

B1,n (4.34)

E2 = ⟨log p(h2,n|f2, h1,n)⟩p(f2,̸=u2 ) = logN (h2,n; A2,nu2, σ2
2)− 1

2σ2
2

B2,n (4.35)

E3 = ⟨log p(yn|f3, h2,n)⟩p(f3,̸=u3 ) = logN (yn; A3,nu3, σ2
3)− 1

2σ2
3

B3,n (4.36)
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where Al,n = knu,lK−1
uu,l and Bl,n = knn,l − knu,lK−1

uu,lkun,l, where we have assumed a
Gaussian observation likelihood so that E3 is analytic, however, this is not a strict requirement.
Now we judiciously choose

q(h1,n|u1) = N (h1,n; A1,nu1, σ2
1), (4.37)

such that substituting this into the bound leads to the cancellation of log q(h1,n|u1). Further-
more, h1,n can be marginalised out as follows,

Fvfe,2,n =
〈
−(((((((log q(h1,n|u1)− log q(h2,n|u2) +

((((((((((((
logN (h1,n; A1,nu1, σ2

1)− 1
2σ2

1
B1,n + E2 + E3

〉
q(·)

=
〈
− log q(h2,n|u2)− 1

2σ2
1

B1,n + ⟨E2⟩q(h1,n) + E3

〉
q(u2,u3,h2,n)

where

⟨E2⟩q(h1,n) = logN (h2,n; ⟨A2,n⟩q(h1,n)u2, σ2
2)− 1

2σ2
2
⟨B2,n⟩q(h1,n)

+ 1
2σ2

2
tr
[
u2u⊺

2(⟨A⊺
2,n⟩q(h1,n)⟨A2,n⟩q(h1,n) − ⟨A

⊺
2,nA2,n⟩q(h1,n))

]
, and

q(h1,n) = ⟨q(h1,n|u1)⟩q(u1) = N (h1,n; A1,nm1, A1,nS1A⊺
1,n + σ2

1)

We can now judiciously choose q(h2,n|u2) in a similar fashion to q(h1,n|u1),

q(h2|u2) = N (h2,n; ⟨A2,n⟩q(h1,n)u2, σ2
2), (4.38)

leading to the cancellation of q(h2,n|u2) in the bound, as follows,

Fvfe,2,n =
〈
−(((((((log q(h2,n|u2)− 1

2σ2
1

B1,n +
(((((((((((((((

logN (h2,n; ⟨A2,n⟩q(h1,n)u2, σ2
2)− 1

2σ2
2
⟨B2,n⟩q(h1,n)

+ 1
2σ2

2
tr
[
u2u⊺

2(⟨A⊺
2,n⟩q(h1,n)⟨A2,n⟩q(h1,n) − ⟨A

⊺
2,nA2,n⟩q(h1,n))

]
+ E3

〉
q(u2,u3,h2,n)

,

= ⟨E3⟩q(u3,h2,n) −
1

2σ2
1

B1,n −
1

2σ2
2
⟨B2,n⟩q(h1,n)

+ 1
2σ2

2
tr
[
(S2 + m2m⊺

2)(⟨A⊺
2,n⟩q(h1,n)⟨A2,n⟩q(h1,n) − ⟨A

⊺
2,nA2,n⟩q(h1,n))

]
,
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where we have placed ⟨E2⟩q(h1,n) back in the bound and integrated out u2, and,

⟨E3⟩q(h2,n) = logN (yn; A3,nu3, σ2
3)− 1

2σ2
3
⟨B3,n⟩q(h2,n)

+ 1
2σ2

3
tr
[
u3u⊺

3(⟨A⊺
3,n⟩q(h3,n)⟨A3,n⟩q(h2,n) − ⟨A

⊺
3,nA3,n⟩q(h2,n))

]
, and

q(h2,n) = ⟨q(h2,n|u2)⟩q(u2) = N (h2,n; ⟨A2,n⟩q(h1,n)m2, ⟨A2,n⟩q(h1,n)S2⟨A2,n⟩⊺q(h1,n) + σ2
2)

Finally, we can also integrate out u3 leading to,

Fvfe,2,n = logN (yn; A3,nm3, σ2
3)− 1

2σ2
1

B1,n −
1

2σ2
2
⟨B2,n⟩q(h1,n) −

1
2σ2

3
⟨B3,n⟩q(h2,n)

+ 1
2σ2

2
tr
[
(S2 + m2m⊺

2)(⟨A⊺
2,n⟩q(h1,n)⟨A2,n⟩q(h1,n) − ⟨A

⊺
2,nA2,n⟩q(h1,n))

]
+ 1

2σ2
3

tr
[
(S3 + m3m⊺

3)(⟨A⊺
3,n⟩q(h2,n)⟨A3,n⟩q(h2,n) − ⟨A

⊺
3,nA3,n⟩q(h2,n))

]
− 1

2σ2
3

tr
[
S3⟨A⊺

3,n⟩q(h3,n)⟨A3,n⟩q(h2,n)
]

. (4.39)

The above result can be trivially extend to networks with more layers, or with latent inputs.

Power EP using the variational approximation in eq. (4.33)?

In the previous sections, we have shown two classes of variational approximations that are
general and can be used for both Power EP and VFE approaches. However, we have not been
able to derive a tractable Power EP procedure that corresponds to the variational posterior
in eq. (4.33).

4.6 Predictions

Given the approximate posterior and a new test input x∗, we wish to make a prediction
about the test output y∗. That is to find

p(y∗|x∗, X, y) ≈
∫

f1,f2,f3,h∗
1,h∗

2

p(y∗|f3, h∗
2)p(h∗

2|f2, h∗
1)p(h∗

1|f1, x∗)
3∏

l=1
p(fl, ̸=u|ul)q(ul|X, y).

This predictive distribution is not analytically tractable, but fortunately, we can approximate
it by a Gaussian sensity resulted from using the nested Gaussian projection sheme, or by
a set of samples resulted from the nested simple Monte Carlo propagation – both of these
techniques are discussed in sections 3.4 and 4.4.
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4.7 Experiments

In this section, we compare the approximate Power EP schemes, i.e. direct optimisation of the
approximate Power EP energy in eq. (4.32), on several toy regression problems, and compare
the approximate Power EP scheme with α = 1 to state-of-the-art methods for Bayesian
neural networks on several real-world regression tasks.

4.7.1 Assessing different α values and various network sizes on toy
datasets

We first evaluate the performance of the approximate Power EP scheme with different α

values in training DGPs. These different variants are tested on two toy regression tasks, a
noisy step function and a noisy periodic function as shown in figs. 4.4 and 4.11. DGPs with
one and two GP layers, and various hidden dimensionalities are used. Each network was
trained by optimising the approximate Power EP energy, using the Adam optimiser (Kingma
and Ba, 2015) with 5000 iterations and learning rate 0.01. In particular, the variational
approximation with an explicit conditional distribution for the hidden variables, as described
in section 4.4, is used. The Gaussian projection step is used in both training and testing.
Note that we do not directly compare to a VFE implementation here, but expect that the
performance of Power EP with α = 0.001 is close to that of the VFE approach.

Qualitative performance using different network sizes

In this experiment, we assess the performance of different network architectures when using
the same approximation learning and inference scheme on the step function data. We use
α = 0.001 and α = 0.5 and provide a qualitative evaluation for different network sizes in
figs. 4.3 and 4.4. These figures show the Power EP energies during training and demonstrate
that while deeper and wider networks take longer to train, they often yield better final
training objectives and qualitatively better prediction.

Qualitative performance using different α values

We next compare the approximate energies and the predictions by using different α values
on a fixed network size. Similar to the results in chapters 2 and 3, bigger α values often give
lower energies, even when the variational approximations are identical after initialisation
(see fig. 4.5). In the case of the step function, this difference leads to a better qualitative
performance for bigger α values, as demonstrated in figs. 4.6 and 4.7. Notably, the noise
variance tends to be smaller and the samples from the posterior exibit more non-Gaussian
structure when bigger α values are used.
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Fig. 4.3 Power EP energies on the training set during training, using different network
architectures and two different α values: 0.001 and 0.5. L is the number of GP layers, and
L = 1 means GP regression. H is the dimension of the hidden layer. Adding more layers
and more hidden dimensions yield better final energies, though taking longer to train. This
improvement often translates to better qualitative predictive performance as shown in fig. 4.4.
Best viewed in colour.
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Fig. 4.4 Prediction after training on the step function data, using different network archi-
tectures and two different α values: 0.001 and 0.5. The predictive means and variances
are obtained using the Gaussian projection approximation. L is the number of GP layers,
and L = 1 means GP regression. H is the dimension of the hidden layer. Black markers
are training points. Solid lines and shaded areas are the means and confidence intervals
of the function values, respectively. The dashed lines show the confidence intervals of the
noisy observations. The pluses show the locations of the pseudo points in the first layer.
Adding more layers and more hidden dimensions yield qualitatively better fits. A quantitative
evaluation is included in fig. 4.8. Best viewed in colour.
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Fig. 4.5 Power EP energies on the training set during training, using different α values and
two network architectures (L = 1 and L = 2, H = 3). The final energy after training is
smaller, i.e. the approximate marginal likelihood is bigger, when α is bigger. This difference
often translates to better qualitative predictive performance as shown in fig. 4.6, but there
are cases that this does not hold (see figs. 4.10 and 4.11). Best viewed in colour.
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Fig. 4.6 Prediction after training on the step function data, using different α values and two
network architectures (L = 1 and L = 2, H = 3). The predictive means and variances are
obtained using the Gaussian projection approximation. Black markers are training points.
Solid lines and shaded areas are the means and confidence intervals of the function values,
respectively. The dashed lines show the confidence intervals of the noisy observations. The
pluses show the locations of the pseudo points in the first layer. In this example, bigger α
values give qualitatively better fit, and notably, learn a smaller observation noise. However,
this trend does not hold in all cases (see figs. 4.10 and 4.11). Best viewed in colour.
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Fig. 4.7 Prediction after training on the step function data, using different α values and two
network architectures (L = 1 and L = 2, H = 3). The predictive means and variances are
obtained using the Gaussian projection approximation. This figure is identical to fig. 4.6, but
we also include samples drawn from the posterior. Note that the prediction based on the
Gaussian projection is generally very uncertain, while the sample functions exhibit far less
uncertain non-Gaussian structure.



4.7 Experiments 117

Quantitative performance using different network sizes and α values

We show the performance of various network sizes and α values on the train and test sets
of the step function case, as evaluated by the average approximate log marginal likelihood
and the average log predictive likelihood respectively, in fig. 4.8. There is a strong evidence
that bigger and deeper networks outperform the shallow architecture (GP regression), and
bigger α values generally outperform smaller values. Importantly, the approximate marginal
likelihood given by Power EP can be used for model comparison, as a network with a higher
approximate log marginal likelihood on the training set tends to perform better on the test
set [see fig. 4.9]. However, these trends are not true in general for all datasets, and there are
pitfalls when using a higher α and a bigger/deeper network.

A failure mode and potential workarounds

As shown in fig. 4.9, the approximate marginal likelihood provided by Power EP can be used
for model comparison, and models with a higher log marginal likelihood tend to outperform
ones that have smaller values. However, fig. 4.10 show that due to the approximate nature
of the Power EP energy, having a higher negative energy can result in a poorer predictive
performance. Figure 4.11 shows the predictions in the case α = 1 has best final training
objective, but learns a very small noise variance and gives poor uncertainty estimates.

More importantly, deeper networks trained using the approximate Power EP energy can
perform poorly, compared to the standard shallow sparse GP regression. Note that these
pitfalls have been shown in chapter 2 to also happen in the standard sparse GP regression
case for high α values, e.g. α = 1 (FITC) tends to prune out the pseudo-points, produce small
observation noise, and explain wiggly functions using its heteroscedastic predictive variances.
Recently, Díaz (2017) provided in-depth experiments on these issues and suggested that
better initialisation schemes, for example, greedy layer-wise initialisation using variational
sparse Gaussian processes, can potentially address the aforementioned pitfalls. An easier and
faster workaround, in light of the results in fig. 4.11, is to use a smaller α value, e.g. α = 0.5.
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Fig. 4.8 The final negative Power EP energy on the training set [top] and the log-likelihood
on the test set [bottom] vs. the total training time, on the step function data. In general,
both the train approximate log marginal likelihood and the test log-likelihood are better for
bigger α values, and for bigger networks. However, these trends are dataset-dependent, as
there are cases when adding layers does not help or having a smaller α is better [as shown in
figs. 4.10 and 4.11].
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Fig. 4.9 The test log-likelihood vs the final approximate log marginal likelihood on the
training set, on the step function data. See fig. 4.8 for more information about the markers
and colours. In this case, there is a strong indication that having a more negative Power EP
energy translates to better test performance, and bigger α values and bigger networks are
generally better. However, a counter-example shown in fig. 4.10 demonstrates that these
trends are not true in general.
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Fig. 4.10 The test log-likelihood vs the final approximate log marginal likelihood on the
training set, on the periodic function data. See fig. 4.8 for more information about the
markers and colours. In contrast to the results in fig. 4.9, bigger networks can perform poorly
compared to the standard GP regression. In addition, having a larger negative Power EP
energy does not translate to a better predictive performance on test set.
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Fig. 4.11 Prediction after training on the periodic function data, using various α values. In
this case, we use a DGP with one three-dimensional hidden layer. Despite having the highest
approximate log marginal likelihood, α = 1 gives a poor overall predictive performance.
When α = 1, the pseudo-points tend to pruned out or clumped together, the learnt noise
is small, and the predictive variances are heteroscedastic even though the model does not
explicitly model observation noise as input-dependent.

4.7.2 Regression on real-world datasets

In this experiment, the approximate Power EP scheme with α = 1, i.e. direct optimisation of
the approximate Power EP energy in eq. (4.32), for training DGPs is validated on several
regression experiments using datasets from the UCI repository. In particular, we use the
ten datasets and train/test splits used by Hernández-Lobato and Adams (2015) and Gal
and Ghahramani (2016): 1 split for the year dataset [N ≈ 500000, D = 90], 5 splits for the
protein dataset [N ≈ 46000, D = 9], and 20 for the others. In all the experiments reported
here, we use Adam with the default learning rate (Kingma and Ba, 2015) for optimising our
objective function. We use an exponentiated quadratic kernel with ARD lengthscales for
each layer. The hyperparameters and pseudo point locations are different between functions
in each layer. The lengthscales and pseudo-inputs of the first GP layer are sensibly initialised
based on the median distance between datapoints in the input space and the k-means cluster
centers respectively. We use long lengthscales and initial pseudo-inputs between [−1, 1] for
the higher layers to force them to start with an identity mapping. We parameterise the
natural parameters of the average factor and initialise them with small random values. We
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evaluate the predictive performance on the test set using two popular metrics: root mean
squared error (RMSE) and mean log likelihood (MLL).

We compare our method (denoted by DGP) against sparse GP regression using the
EP approximation (which has the same form as FITC, denoted by GP) and Bayesian
neural network (denoted by BNN) regression using several state-of-the-art deterministic
and sampling-based approximate inference techniques. As baselines, we include the results
for BNNs reported in Hernández-Lobato and Adams (2015), BNN-VI(G)-1 and BNN-PBP-
1, and in Gal and Ghahramani (2016), BNN-Dropout-1. The results reported for these
methods are for networks with one hidden layer of 50 units (100 units for protein and year).
Specifically, BNN-VI(G) uses a mean-field Gaussian approximation for the weights in the
network and obtains the stochastic estimates of the bound and its gradient using a Monte
Carlo approach (Graves, 2011). BNN-PBP employs Assumed Density Filtering and the
probabilistic backpropagation algorithm to obtain a Gaussian approximation for the weights
(Hernández-Lobato and Adams, 2015). BNN-Dropout is a recently proposed technique that
employs dropout during training as well as at prediction time, that is to average over several
predictions, each made by the entire network with a random proportion of the weights set to
zero (Gal and Ghahramani, 2016). We implement other methods as follows,

• DGP: we evaluate three different architectures of DGPs, each with two GP layers
and one hidden layer of one, two and three dimensions respectively (DGP-1, DGP-2,
and DGP-3). We include the results for two settings of the number of pseudo-points,
M = 50 and M = 100 respectively. Note that for the bigger datasets protein and year,
we use M = 100 and M = 200 but do not annotate this in Figure 4.13. We choose
these settings to ensure the run time for our method is smaller or comparable to that
of other methods for BNNs.

• GP: we use the same number of pseudo-datapoints as in DGP (GP 50 and GP 100).

• BNN-VI(KW): this method, similar to (Graves, 2011), employs a mean-field Gaus-
sian variational approximation but evaluates the variational free energy using the
reparameterisation trick proposed by Kingma and Welling (2014). We use a diagonal
Gaussian prior for the weights and fix the prior variance to 1. The noise variance
of the Gaussian noise model is optimised together with the means and variances of
the variational approximation using the variational free energy. We test two different
network architectures with the rectified linear activation function, and one and two
hidden layers, each of 50 units (100 for the two big datasets), denoted by VI(KW)-1
and VI(KW)-2 respectively.

• BNN-SGLD: we reuse the same networks with one and two hidden layers as with
VI(KW) and approximately sample from the posterior over the weights using Stochastic
Gradient Langevin Dynamics (SGLD) (Welling and Teh, 2011). We place a diagonal
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Gaussian prior over the weights and parameterise the observation noise variance as
σ2 = log(1 + exp(κ)), a broad Gaussian prior over κ and sample κ using the same
SGLD procedure. Two step sizes, one for the weights and one for κ, were manually
tuned for each dataset. We use Autograd for the implementation of BNN-SGLD and
BNN-VI(KW) (github.com/HIPS/autograd).

• BNN-HMC: We run Hybrid Monte Carlo (HMC) (Neal, 1993) using the MCMCstuff
toolbox (Vanhatalo and Vehtari, 2006) for networks with one hidden layer. We place a
Gaussian prior over the network weights and a broad inverse Gamma hyper-prior for
the prior variance. We also assume an inverse Gamma prior over the observation noise
variance. Note that this procedure takes a long time (e.g. 3 days for protein) and the
year dataset is too large to be handled in this way.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MLL Average Rank

PBP−1
Dropout−1
SGLD−1
DGP−1 50
SGLD−2
VI(KW)−1
GP 50

DGP−3 100
DGP−2 100
DGP−3 50
DGP−2 50

GP 100
HMC−1

VI(KW)−2
DGP−1 100

CD

Fig. 4.12 The average rank of all methods across the datasets and their train/test splits,
generated based on Demšar (2006). See the text for more details.

Figure 4.13 shows the average test log likelihood (MLL) for a subset of methods with
their standard errors. We exclude methods that perform consistently poorly to improve
readability. Full results and many more comparisons can be found in (Bui et al., 2016). We
also evaluate the average rank of the MLL performance of all methods across the datasets
and their train/test splits and include the results in Figure 4.12. This figure is generated
using the comparison scheme provided by Demšar (2006), and shows statistical differences in
the performance of the methods. More precisely, if the gap between the average ranks of
any two methods is above the critical distance (shown on the top right), the two methods’
performances are statistically significantly different. Methods that are not significantly
different from each other are linked by a solid line. The rank result shows that DGPs with
the approximate Power EP scheme are the best performing methods overall. Specifically,
the DGP-3-100 architecture obtains the best performance on 6 out of 10 datasets and are
competitive on the remaining four datasets. The performance of other DGP variants follows
closely with the exception for DGP-1 which is a standard warped GP, the network with
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Fig. 4.13 Average predictive log likelihood of existing approaches for BNNs and GPs, and the proposed method for DGPs, across 10
datasets. The higher the better, and best viewed in colour. Full results are included in the supplementary material.
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one-dimensional hidden layer. DGP-1 performs poorly compared to GP regression but is
still competitive with several methods for BNNs. The results also strongly indicate that the
predictive performance is almost always improved by adding extra hidden layers or extra
hidden dimensions or extra pseudo-points.

The best non-GP method is BNN-VI(KW)-2 which obtains the best performance on
three datasets. However, this method performs poorly on 6 out of 7 remaining datasets,
pushing down the corresponding average rank. Despite this, VI(KW) is the best method of
all deterministic approximations for BNNs with one or two hidden layers. Overall, the VI
approach without the reparameterisation trick of Graves (2011), Dropout, and PBP perform
poorly in comparison and give inaccurate predictive uncertainty.

Sampling-based methods such as SGLD and HMC obtain good predictive performance
overall, but often require more tuning compared to other methods. In particular, HMC
appears superior on one dataset, and competitive with DGPs on three other datasets; however,
this method does not scale to large datasets.

The results for the RMSE metric follow the same trends with DGP-2 and DGP-3
performing as well or better compared to other methods. Interestingly, BNN-SGLD, despite
being ranked relatively low according to the MLL metric, often provides good RMSE results
perhaps unsurprisingly given the algorithm’s similarity to stochastic gradient ascent.

4.8 Summary

This chapter has provided an extensive literature survey of approximation schemes for DGPs,
and bridged the gap and provided a clear connection between many of these approximations,
viewing them as special cases of performing approximate inference and learning using Power
EP. We also considered several methods for propagating uncertainty in deep architectures
and sidestepping a difficult marginalisation problem in the VFE/Power EP algorithm used.
Some of the methods reviewed and proposed are evaluated on a range of toy and real-world
and regression tasks. All of the approximations discussed can be extended and applied to
classification tasks or when the inputs are random variables (unsupervised DGPs), however,
we left this as future work. More experiments are also needed to assess the performance of the
approximate posteriors in table 4.1, and whether EP, VFE or Power-EP with intermediate α

values is best for training DGPs.



Chapter 5

Conclusions

5.1 Contributions

In this thesis, we have discussed a class of approximation schemes that allow practical and
tractable approximate Bayesian inference and learning in a variety of Gaussian process models.
In summary, this thesis unifies existing work and advances the frontiers of the following
research themes:

Approximate Bayesian inference for Gaussian process models: We developed
several unifying approximate inference and learning frameworks based on power expec-
tation propagation for GP regression, classification, latent variable, state space, and
hierarchical GP models. Critically, the new frameworks rely on approximate inference
in the original, unmodified models, instead of (approximate/exact) inference in an
approximate model. We also showed that the new frameworks allow state-of-the-art
methods to emerge and that many existing techniques can be recovered as special cases.

Structured and correlated posterior approximations: This thesis considered a
variety of structured approximate posteriors that admit efficient inference and tractable
computation of the approximate marginal likelihood for hyperparameter learning. We
also discussed several posterior approximations for the GP state space model and deep
GPs, that explicitly retain the dependencies between the hidden variables and the
global variables (GP mappings). Importantly, these approximations are judiciously
chosen so that no parameterised approximations for the hidden variables are needed,
whilst inference and learning can still be performed at no additional computational
cost.

Principled uncertainty propagation in recurrent and deep architectures: We
discussed several strategies for propagating probability densities for GP state space
models and deep GPs based on linearisation, Gaussian projection/moment matching,
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and simple Monte Carlo. These techniques can be applied at both training and test
time, and are reminiscent of scented and unscented techniques in the signal processing
and control literature.

5.2 Future work

The approximate inference and learning frameworks studied in this thesis allow many GP
models to be tractably deployed in practice. We believe this thesis has only scratched the
surface and there is a whole realm of possible future directions including,

more advanced structured posterior approximations that retain correlations
between variables and, at the same time, enable computationally efficient and memory
efficient inference and learning: for example we have suggested using an approximate
posterior with an explicit conditional distribution for the hidden variables given the
global variable for GPSSMs in section 3.10.1, in a similar fashion to section 4.4. These
approximations could be applied to other hierarchical probabilistic models such as deep
exponential families (Ranganath et al., 2015).

active learning of non-linear functions in models with hidden/latent vari-
ables: in this case, the hidden variables are not of interest in the active learning task
and therefore need to be integrated out. For example, the information theoretic active
learning objective of Houlsby et al. (2011), originally developed for GP classification,
can be extended to the GPSSM as suggested in section 3.10.2.

models with multiple correlated outputs: we have only discussed sparse approxi-
mations for GP models in which multiple output dimensions are assumed conditionally
independent given the input, however, these could be extended to models with explicitly
correlated outputs given the input.

continual learning and transfer learning using streaming data and multi-
ple related tasks: the training data in practice can come from multiple (related)
sources/tasks and can arrive in chunks at different time points, hence it is important to
devise schemes that can continually adjust the posterior approximations as data arrive,
without the need to retrain from scratch. The approximations discussed in this thesis
could be extended to these settings (see e.g. Bui et al., 2017a).
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Appendix A

Derivations for Chapter 2

A.1 A unified objective for unnormalised KL variational free-
energy methods

Here we show that performing variational inference by optimising the unnormalised KL
naturally leads to a single objective for both the approximation to the joint distribution,
q∗(f |θ) and the hyperparameters θ.

The unnormalised KL is given by

KL(q∗(f |θ)||p(f, y|θ)) =
∫

q∗(f |θ) log q∗(f |θ)
p(f, y|θ)df +

∫
(p(f, y|θ)− q∗(f |θ)) df. (A.1)

This is intractable as it includes the marginal likelihood p(y|θ) =
∫

p(f, y|θ)df . However,
since we are interested in minimising this objective with respect to q∗(f |θ) we can ignore the
intractable term,

argmin
q∗(f |θ)

KL(q∗(f |θ)||p(f, y|θ)) = argmax
q∗(f |θ)

(
p(y|θ)−KL(q∗(f |θ)||p(f, y|θ))

)
(A.2)

= argmax
q∗(f |θ)

(∫
q∗(f |θ) log p(f, y|θ)

q∗(f |θ) df +
∫

q∗(f |θ)df

)
. (A.3)

In other words, we have turned the unnormalised KL into a tractable lower-bound of the
marginal likelihood G(q∗(f |θ), θ) = p(y|θ)−KL(q∗(f |θ)||p(f, y|θ)). The structure of this new
lower-bound can be understood by decomposing the approximation to the joint distribution
into a normalised posterior approximation q(f |θ) and an approximation to the marginal
likelihood, ZVFE, that is q∗(f |θ) = ZVFEq(f |θ).

G(ZVFEq(f |θ), θ) = ZVFE

(
1− log ZVFE +

∫
q(f |θ) log p(f, y|θ)

q(f |θ) df

)
(A.4)
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We can see that optimising the lower-bound with respect to θ is equivalent to optimising the
standard variational free-energy F(q(f |θ), θ) =

∫
q(f |θ) log p(f,y|θ)

q(f |θ) df . Moreover, optimising
for ZVFE recovers Zopt

VFE = exp(F(q(f |θ), θ)). Substituting this back into the bound

G(Zopt
VFEq(f |θ), θ) = Zopt

VFE = exp(F(q(f |θ), θ)). (A.5)

In other words, the new collapsed bound is just the exponential of the original variational free-
energy and optimising the collapsed bound for θ is equivalent to optimising the approximation
to the marginal likelihood.

A.2 Global and local inclusive KL minimisations

In this section, we will show that optimising a single global inclusive KL-divergence, KL(q||p),
is equivalent to optimising a sum of a set of local inclusive KL-divergence, KL(q||p̃), where
p, q and p̃ are the exact posterior, the approximate posterior and the tilted distribution
accordingly. Without loss of generality, we assume that p(θ) = ∏

n fn(θ) ≈ ∏n tn(θ) = q(θ),
that is the exact posterior is a product of factors, {fn(θ)}n, each of which is approximated by
an approximate factor tn(θ). Substituting these distributions into the global KL-divergence
gives,

KL(q(θ)||p(θ)) =
∫

dθq(θ) log q(θ)
p(θ)

=
∫

dθq(θ) log
∏

n tn(θ)∏
n fn(θ)

=
∫

dθq(θ) log
[∏

n tn(θ)∏
n fn(θ)

∏
n

∏
i ̸=n ti(θ)∏

n

∏
i ̸=n ti(θ)

]
=
∫

dθq(θ) log
∏

n[∏i ti(θ)]∏
n[fn(θ)∏i ̸=n ti(θ)]

=
∑

n

∫
dθq(θ) log

∏
i ti(θ)

[fn(θ)∏i ̸=n ti(θ)

=
∑

n

KL(q(θ)||p̃n(θ)), (A.6)

which means running the EP procedure, where we use KL(q(θ)||p̃n(θ)) in place of
KL(p̃n(θ)||q(θ)), is equivalent to the VFE approach which optimises a single global KL-
divergence, KL(q(θ)||p(θ)).
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A.3 Some relevant linear algebra and function expansion
identities

The Woodbury matrix identity or Woodbury formula is:

(A + UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (A.7)

In general, C need not be invertible, we can use the Binomial inverse theorem,

(A + UCV )−1 = A−1 −A−1UC(C + CV A−1UC)−1CV A−1. (A.8)

When C is an identity matrix and U and V are vectors, the Woodbury identity can be
shortened and become the Sherman-Morrison formula,

(A + uv⊺)−1 = A−1 − A−1uv⊺A−1

1 + v⊺A−1u
. (A.9)

Another useful identity is the matrix determinant lemma,

det(A + uv⊺) = (1 + v⊺A−1u)det(A). (A.10)

The above theorem can be extend for matrices U and V ,

det(A + UV ⊺) = det(I + V ⊺A−1U)det(A). (A.11)

We also make use of the following Maclaurin series,

exp(x) = 1 + x + x2

2! + x3

3! + · · · (A.12)

and log(1 + x) = x− x2

2 + x3

3 + · · · . (A.13)

A.4 KL minimisation between Gaussian processes and mo-
ment matching

The difficult step of Power EP is the projection step, that is how to find the posterior
approximation q(f) that minimises the KL divergence, KL(p̃(f)||q(f)), where p̃(f) is the
tilted distribution. We have chosen the form of the approximate posterior

q(f) = p(f̸=u|u)q(u) = p(f̸=u|u)exp(θ⊺uϕ(u))
Z(θu) , (A.14)
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where Z(θu) =
∫

exp(θ⊺uϕ(u))du to ensure normalisation. We can then write the KL
minimisation objective as follows,

FKL = KL(p̃(f)||q(f)) (A.15)

=
∫

p̃(f) log p̃(f)
q(f)df (A.16)

= ⟨log p̃(f)⟩p̃(f) − ⟨log p(f̸=u|u)⟩p̃(f) − θ⊺u⟨ϕ(u)⟩p̃(f) + logZ(θu). (A.17)

Since p(f̸=u|u) is the prior conditional distribution, the only free parameter that controls our
posterior approximation is θu. As such, to find θu that minimises FKL, we find the gradient
of FKL w.r.t θu and set it to zero,

0 = dFKL
dθu

= −⟨ϕ(u)⟩p̃(f) + d logZ(θu)
dθu

(A.18)

= −⟨ϕ(u)⟩p̃(f) + ⟨ϕ(u)⟩q(u), (A.19)

therefore, ⟨ϕ(u)⟩p̃(f) = ⟨ϕ(u)⟩q(u). That is, though we are trying to perform the KL minimisa-
tion between two Gaussian processes, due to the special form of the posterior approximation,
it is sufficient to only match the moments at the pseudo-points u.1

A.5 Shortcuts to the moment matching equations

The most crucial step in Power EP is the moment matching step as discussed above. This
step can be done analytically for the Gaussian case, as the mean and covariance of the
approximate posterior can be linked to the cavity distribution as follows,

mu = m\n
u + V\n

uf

d logZtilted,n

dm\n
f

, (A.20)

Vu = V\n
u + V\n

uf

d2 logZtilted,n

dm\n,2
f

V\n
fu, (A.21)

where Ztilted,n is the normaliser of the tilted distribution,

Ztilted,n =
∫

q\n(f)p(yn|f)df (A.22)

=
∫

q\n(f)p(yn|fn)df (A.23)

=
∫

q\n(fn)p(yn|fn)dfn. (A.24)

1We can show that this condition gives the minimum of FKL by computing the second derivative.
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In words, Ztilted,n only depends on the marginal distribution of the cavity process, q\n(fn),
simplifying the moment matching equations above,

mu = m\n
u + V\n

ufn

d logZtilted,n

dm
\n
fn

, (A.25)

Vu = V\n
u + V\n

ufn

d2 logZtilted,n

dm
\n,2
fn

V\n
fnu. (A.26)

We can rewrite the cross-covariance V\n
ufn

= V\n
u K−1

uuKufn . We also note that, m
\n
fn

=
KfnuK−1

uum\n
u , resulting in,

d logZtilted,n

dm\n
u

= d logZtilted,n

dm
\n
fn

K−1
uuKufn , (A.27)

d logZtilted,n

dV\n
u

= K−1
uuKufn

d2 logZtilted,n

dm
\n,2
fn

KfnuK−1
uu. (A.28)

Substituting these results back in eqs. A.25 and A.26, we obtain

mu = m\n
u + V\n

u
d logZtilted,n

dm\n
u

, (A.29)

Vu = V\n
u + V\n

u
d2 logZtilted,n

dm\n,2
u

V\n
u . (A.30)

Therefore, using eqs. A.25 and A.26, or eqs. A.29 and A.30 are equivalent in our approxi-
mation settings.

A.6 Full derivation of the Power EP procedure

We provide the full derivation of the Power EP procedure in this section. We follow the
derivation in (Qi et al., 2010) closely, but provide a clearer exposition and details how to get
to each step used in the implementation, and how to handle powered/fractional deletion and
update in Power EP.

A.6.1 Optimal factor parameterisation

We start by defining the approximate factors to be in natural parameter form as this makes
it simple to combine and delete them, tn(u) = Ñ (u; zn, T1,n, T2,n) = zn exp(u⊺T1,n −
1
2u⊺T2,nu). We initially consider full rank T2,n, but will show that the optimal form is rank
1.

The next goal is to relate these parameters to the approximate GP posterior. The
approximate posterior over the pseudo-outputs has natural parameters T1,u = ∑

n T1,n and
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T2,u = K−1
uu +∑n T2,n. This induces an approximate GP posterior with mean and covariance

function,

mf = KfuK−1
uuT−1

2,uT1,u = Kfuγ (A.31)
Vff′ = Kff′ −Qff′ + KfuK−1

uuT−1
2,uK−1

uuKuf′ = Kff′ −KfuβKuf′ . (A.32)

where γ and β are likelihood-dependent terms we wish to store and update using PEP; γ

and β fully specify the approximate posterior.
Deletion step: The cavity for data point n, q\n(f) ∝ q∗(f)/tα

n(u), has a similar form to
the posterior, but the natural parameters are modified by the deletion, T\n

1,u = T1,u − αT1,n

and T\n
2,u = T2,u − αT2,n, yielding a new mean and covariance function

m
\n
f = KfuK−1

uuT\n,−1
2,u T\n

1,u = Kfuγ\n (A.33)

V
\n

ff′ = Kff′ −Qff′ + KfuK−1
uuT\n,−12,uK−1

uuKuf′ = Kff′ −Kfuβ\nKuf′ . (A.34)

Projection step: The central step in Power EP is the projection step. Obtaining the
new approximate unormalised posterior q∗(f) such that KL(p̃(f)||q∗(f)) is minimised would
naïvely appear intractable. Fortunately, as shown in the previous section, because of the
structure of the approximate posterior, q(f) = p(f̸=u|u)q(u), the objective, KL(p̃(f)||q∗(f))
is minimised when Ep̃(f)[ϕ(u)] = Eq(u)[ϕ(u)], where ϕ(u) are the sufficient statistics, that
is when the moments at the pseudo-inputs are matched. This is the central result from
which computational savings are derived. Furthermore, this moment matching condition
would appear to necessitate computation of a set of integrals to find the zeroth, first and
second moments. Using results from the previous section simplifies and provides the following
shortcuts,

mu = m\n
u + V\n

ufn
d log Z̃n

dm
\n
fn

(A.35)

Vu = V\n
u + V\n

ufn
d2 log Z̃n

d(m\n
fn )2

V\n
fnu. (A.36)

where log Z̃n = logEq\n(f)[pα(yn|fn)] is the log-normaliser of the tilted distribution.
Update step: Having computed the new approximate posterior, the fractional approxi-

mate factor tn,new(u) = q∗(f)/q\n(f) can be straightforwardly obtained, resulting in,

T1,n,new = V−1
u mu −V\n,−1

u m\n
u (A.37)

T2,n,new = V−1
u −V\n,−1

u (A.38)
zα

n = Z̃n exp(G
q

\n
∗ (u) − Gq∗(u)), (A.39)
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where GÑ (u;z,T1,T2) =
∫
Ñ (u; z, T1, T2)du. Let d1 = d log Z̃n

dm
\n
fn

and d2 = d2 log Z̃n

d(m\n
fn )2

. Using

eq. (A.7) and eq. (A.36), we have,

V−1
u −V\n,−1

u = −V\n,−1
u V\n

ufn

[
d−1

2 + V\n
fnuV\n,−1

u V\n
ufn

]−1
V\n

fnuV\n,−1
u (A.40)

Let vn = α(−d−1
2 −V\n

fnuV\n,−1
u V\n

ufn), and wn = V\n,−1
u V\n

ufn . Combining eq. (A.40) and
eq. (A.38) gives

T2,n,new = wnαv−1
n w⊺

n (A.41)

At convergence, we have tn(u)α = tn,new(u), hence T2,n = wnv−1
n w⊺

n. In words, T2,n is
optimally a rank-1 matrix. Note that,

wn = V\n,−1
u V\n

ufn (A.42)
= (Kuu −Kuuβ\nKuu)−1(Kufn −Kuuβ\nKufn) (A.43)
= K−1

uu(I−Kuuβ\n)−1(I−Kuuβ\n)Kufn (A.44)
= K−1

uuKufn . (A.45)

Using eq. (A.35) an eq. (A.41) gives,

V−1
u mu = (V\n,−1

u + wnαv−1
n w⊺

n)(m\n
u + V\n

ufnd1) (A.46)

= V\n,−1
u m\n

u + wnαv−1
n w⊺

nm\n
u + V\n,−1

u V\n
ufnd1 + wnαv−1

n w⊺
nV\n

ufnd1 (A.47)

Substituting this result into eq. (A.37),

T1,n,new = V−1
u mu −V\n,−1

u m\n
u (A.48)

= wnαv−1
n w⊺

nm\n
u + V\n,−1

u V\n
ufnd1 + wnαv−1

n w⊺
nV\n

ufnd1 (A.49)

= wnαv−1
n

(
w⊺

nm\n
u + d1vn/α + w⊺

nV\n
ufnd1

)
. (A.50)

Let T1,n,new = wnαv−1
n gn, we obtain,

gn = −d1
d2

+ Kfnuγ\n. (A.51)
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At convergence, T1,n = wnv−1
n gn. Re-writing the form of the approximate factor using T1,n

and T2,n at convergence,

tn(u) = Ñ (u; zn, T1,n, T2,n) (A.52)

= zn exp(u⊺T1,n −
1
2u⊺T2,nu) (A.53)

= zn exp(u⊺wnv−1
n gn −

1
2u⊺wnv−1

n w⊺
nu) (A.54)

As a result, the minimal and simplest way to parameterise the approximate factor is tn(u) =
z̃nN (w⊺

nu; gn, vn) = z̃nN (KfnuK−1
uuu; gn, vn), where gn and vn are scalars, resulting in a

significant memory saving compared to the parameterisation using T1,n and T2,n.

A.6.2 Projection

We now recall the update equations in the projection step (eqns. A.35 and A.36):

mu = m\n
u + V\n

ufnd1, (A.55)

Vu = V\n
u + V\n

ufnd2V\n
fnu. (A.56)

Note that:

mu = Kuuγ, (A.57)
Vu = Kuu −KuuβKuu, (A.58)

and

m\n
u = Kuuγ\n, (A.59)

V\n
u = Kuu −Kuuβ\nKuu. (A.60)

Using these results, we can convert the update for the mean and covariance, mu and Vu,
into an update for γ and β,
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γ = K−1
uumu (A.61)

= K−1
uu(m\n

u + V\n
ufnd1) (A.62)

= γ\n + K−1
uuV\n

ufnd1, and (A.63)
β = K−1

uu(Kuu −Vu)K−1
uu (A.64)

= K−1
uu(Kuu −V\n

u −V\n
ufnd2V\n

fnu)K−1
uu (A.65)

= β\n −K−1
uuV\n

ufnd2V\n
fnuK−1

uu (A.66)

A.6.3 Deletion step

Finally, we present how deletion might be accomplished. One direct approach to this step is
to divide out the cavity from the cavity, that is,

q\n(f) ∝ q(f)
tα
n(u) = p(f̸=u|u)q(u)

tα
n(u) = p(f̸=u|u)q\n(u). (A.67)

Instead, we use an alternative using the KL minimisation as used in (Qi et al., 2010), by
realising that doing this will result in an identical outcome as the direct approach since the
factor and distributions are Gaussian. Furthermore, we can re-use results from the projection
and inclusion steps, by simply swapping the quantities and negating the site approximation
variance. In particular, we present projection and deletion side-by-side, to facilitate the
comparison,

Projection: q(f) ≈ q\n(f)p(yn|fn) (A.68)

Deletion: q\n(f) ∝ q(f) 1
tα
n(u) (A.69)

The projection step minimises the KL between the LHS and RHS while moment matching,
to get q(f). We would like to do the same for the deletion step to find q\n(f), and thus reuse
the same moment matching results for γ and β with some modifications.

Our task will be to reuse Equations A.63 and A.66, the moment matching equations in γ

and β. We have two differences to account for. Firstly, we need to change any uses of the
parameters of the cavity distribution to the parameters of the approximate posterior, V\n

ufn
to Vufn , γ\n to γ and β\n to β. This is the equivalent of re-deriving the entire projection
operation, while swapping the symbols (and quantities) for the cavity and the full distribution.
Secondly, the derivatives d1 and d2 are different here, as

log Z̃n = log
∫

q(f) 1
tα
n(u)df (A.70)
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Now, we note

1
tn(u) ∝

1
Nα(w⊺

nu; gn, vn) (A.71)

∝ 1
exp

(
−α

2 v−1
n (w⊺

nu− gn)2
) (A.72)

= exp
(1

2αv−1
n (w⊺

nu− gn)2
)

(A.73)

∝ N (w⊺
nu; gn,−vn/α) (A.74)

Then we obtain the derivatives of log Z̃n

d̃2 = d2 log Z̃n

dm2
fn

= −
[
Kfn,uK−1

u,uKu,fn −Kfn,uβKu,fn − vn/α
]−1

(A.75)

d̃1 = d log Z̃n

dmfn
= (Kfn,uγ − gn)d̃2 (A.76)

Putting the above results together, we obtain,

γ\n = γ + K−1
uuVufn d̃1, and (A.77)

β\n = β −K−1
uuVufn d̃2VfnuK−1

uu (A.78)

A.6.4 Summary of the PEP procedure

We summarise here the key steps and equations that we have obtained, that are used in the
implementation:

1. Initialise the parameters: {gn = 0}Nn=1, {vn =∞}Nn=1, γ = 0M×1 and β = 0M×M

2. Loop through all data points until convergence:

(a) Deletion step: find γ\n and β\n

γ\n = γ + K−1
uuVufn d̃1, and (A.79)

β\n = β −K−1
uuVufn d̃2VfnuK−1

uu (A.80)

(b) Projection step: find γ and β

γ = γ\n + K−1
uuV\n

ufnd1, (A.81)

β = β\n −K−1
uuV\n

ufnd2V\n
fnuK−1

uu (A.82)
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(c) Update step: find gn,new and vn,new

gn,new = −d1
d2

+ Kfnuγ\n, (A.83)

vn,new = −d−1
2 −V\n

fnuV\n,−1
u V\n

ufn (A.84)

and parameters for the full factor,

vn ← (v−1
n,new + (1− α)v−1

n )−1 (A.85)
gn ← vn(gn,newv−1

n,new + (1− α)gnv−1
n ) (A.86)

A.7 Power EP energy for sparse GP regression and classifi-
cation

The Power EP procedure gives an approximate marginal likelihood, which is the negative
Power EP energy, as follows,

F = G(q∗(u))− G(p∗(u)) + 1
α

∑
n

[
logZtilted,n + G(q\n

∗ (u))− G(q∗(u))
]

(A.87)

where G(q∗(u)) is the log-normaliser of the approximate posterior, that is,

G(q∗(u)) = log
∫

p(f̸=u|u) exp(θ⊺uϕ(u))df̸=udu (A.88)

= log
∫

exp(θ⊺uϕ(u))du (A.89)

= M

2 log(2π) + 1
2 log |V|+ 1

2m⊺V−1m, (A.90)

where m and V are the mean and covariance of the posterior distribution over u, respectively.
Similarly,

G(q\n
∗ (u)) = M

2 log(2π) + 1
2 log |Vcav,n|+

1
2m⊺

cav,nV−1
cav,nmcav,n, (A.91)

and G(p∗(u)) = M

2 log(2π) + 1
2 log |Kuu|. (A.92)
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Finally, logZtilted,n is the log-normalising constant of the tilted distribution,

logZtilted = log
∫

qcav(f)pα(yn|f)df (A.93)

= log
∫

p(f̸=u|u)qcav(u)pα(yn|f)df̸=udu (A.94)

= log
∫

p(fn|u)qcav(u)pα(yn|fn)dfndu (A.95)

Next, we can write down the form of the natural parameters of the approximate posterior
and the cavity distribution, based on the approximate factor’s parameters, as follows,

V−1 = K−1
uu +

∑
i

wiτiw⊺
i (A.96)

V−1m =
∑

i

wiτiỹi (A.97)

V−1
cav,n = V−1 − αwnτnw⊺

n (A.98)
Vcav,n

−1mcav,n = V−1m− αwnτngn (A.99)

Note that τi := v−1
i . Using eq. (A.9) and eq. (A.98) gives,

Vcav,n = V + Vwnατnw⊺
nV

1−w⊺
nατnVwn

. (A.100)

Using eq. (A.10) and eq. (A.98) gives,

log det(Vcav,n) = log det(V)− log(1−w⊺
nατnVwn). (A.101)

Subsituting eq. (A.100) and eq. (A.101) back to eq. (A.91) results in,

G(q\n
∗ (u)) = M

2 log(2π) + 1
2 log det(V) + 1

2m⊺V−1m

− 1
2 log(1−w⊺

nατnVwn) + 1
2

m⊺wnατnw⊺
nm

1−w⊺
nατnVwn

+ 1
2gnατnw⊺

nVcav,nwnατngn − gnατnw⊺
nVcav,nV−1m (A.102)

We now plug the above result back into the approximate marginal likelihood, yeilding,

F = 1
2 log |V|+ 1

2m⊺V−1m− 1
2 log |Kuu|+

1
α

∑
n

logZtilted,n

+
∑

n

[
− 1

2α
log(1−w⊺

nατnVwn) + 1
2

m⊺wnτnw⊺
nm

1−w⊺
nατnVwn

+1
2gnτnw⊺

nVcav,nwnατngn − gnτnw⊺
nVcav,nV−1m

]
(A.103)
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A.7.1 Regression

We have shown in the previous section that the fixed point solution of the Power EP
iterations can be obtained analytically for the regression case, gn = yn and τ−1

n = dn =
α(Kfnfn − KfnuK−1

uuKufn) + σ2
y . Crucially, we can obtain a closed form expression for

logZtilted,n,

logZtilted,n = −α

2 log(2πσ2
y) + 1

2 log(σ2
y)− 1

2 log(αvn + σ2
y)− 1

2
(yn − µn)2

vn + σ2
y/α

(A.104)

where µn = w⊺
nmcav = w⊺

nVcav(V−1m −wnατnyn) and vn = dn−σ2
y

α + w⊺
nVcavwn. We can

therefore simplify the approximate marginal likelihood F further,

F = 1
2 log |V|+ 1

2m⊺V−1m− 1
2 log |Kuu|+

∑
n

[
−1

2 log(2πσ2
y) + 1

2α
log σ2

y −
1

2α
log dn −

y2
n

2dn

]

= −N

2 log(2π)− 1
2 log |D + Qff | −

1
2yT (D + Qff )−1y− 1− α

2α

∑
n

log(dn

σ2
y

), (A.105)

where Qff = KfuK−1
uuKuf and D is a diagonal matrix, Dnn = dn.

When α = 1, the approximate marginal likelihood takes the same form as the FITC
marginal likelhood,

F = −N

2 log(2π)− 1
2 log |D + Qff | −

1
2yT (D + Qff )−1y (A.106)

where Dnn = dn = Kfnfn −KfnuK−1
uuKufn + σ2

y .
When α tends to 0, we have,

lim
α→0

1− α

2α

∑
n

log(dn

σ2
y

) = 1
2
∑

n

lim
α→0

log(1 + α gn

σ2
y
)

α
=
∑

n hn

2σ2
y

, (A.107)

where hn = Kfnfn −KfnuK−1
uuKufn . Therefore,

F = −N

2 log(2π)− 1
2 log |σ2

yI + Qff | −
1
2yT (σ2

yI + Qff )−1y−
∑

n hn

2σ2
y

, (A.108)

which is the variational lower bound of Titsias (Titsias, 2009).

A.7.2 Classification

In contrast to the regression case, the approximate marginal likelihood for classification
cannot be simplified due to the non-Gaussian likelihood. Specifically, logZtilted,n is not
analytically tractable, except when α = 1 and the classification link function is the Gaussian



148 Derivations for Chapter 2

CDF. However, this quantity can be evaluated numerically, using sampling or Gauss-Hermite
quadrature, since it only involves a one-dimensional integral.

We now consider the case when α tends to 0 and verify that in such case the approximate
marginal likelihood becomes the variational lower bound. We first find the limits of individual
terms in eq. (A.103):

lim
α→0
− 1

2α
log(1−w⊺

nατnVwn) = 1
2w⊺

nτnVwn (A.109)

1
2

m⊺wnτnw⊺
nm

1−w⊺
nατnVwn

∣∣∣∣
α=0

= 1
2m⊺wnτnw⊺

nm (A.110)

1
2gnτnw⊺

nVcav,nwnατngn

∣∣∣∣
α=0

= 0 (A.111)

−gnτnw⊺
nVcav,nV−1m

∣∣∣∣
α=0

= −gnτnw⊺
nm. (A.112)

We turn our attention to logZtilted,n. First, we expand pα(yn|fn) using eq. (A.12):

pα(yn|fn) = exp(α log p(yn|fn)) (A.113)
= 1 + α log p(yn|fn) + ξ(α2). (A.114)

Substituting this result back into logZtilted/α gives,

1
α

logZtilted = 1
α

log
∫

p(fn|u)qcav(u)pα(yn|fn)dfndu (A.115)

= 1
α

log
∫

p(fn|u)qcav(u)[1 + α log p(yn|fn) + ξ(α2)]dfndu (A.116)

= 1
α

log
[
1 + α

∫
p(fn|u)qcav(u) log p(yn|fn)dfndu + α2ξ(1)

]
(A.117)

= 1
α

[
α

∫
p(fn|u)qcav(u) log p(yn|fn)dfndu + α2ξ(1)

]
(A.118)

=
∫

p(fn|u)qcav(u) log p(yn|fn)dfndu + αξ(1). (A.119)

Therefore,

lim
α→0

1
α

logZtilted =
∫

p(fn|u)q(u) log p(yn|fn)dfndu. (A.120)
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Putting these results into eq. (A.103), we obtain,

F = 1
2 log |V|+ 1
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1
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(A.121)

We now write down the evidence lower bound of the global variational approach of Titsias
(Titsias, 2009), as applied to the classification case (Hensman et al., 2015),

FVFE = −KL(q(u)||p(u)) +
∑

n

∫
p(fn|u)q(u) log p(yn|fn)dfndu (A.122)

where

−KL(q(u)||p(u)) = −1
2trace(K−1
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uum + M

2 −
1
2 log |Kuu|+

1
2 log |V|

= −1
2trace([V−1 −

∑
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wnτnwn]V)− 1
2m⊺K−1

uum + M

2 −
1
2 log |Kuu|+

1
2 log |V|

= 1
2trace(

∑
n

wnτnwnV)− 1
2m⊺K−1

uum− 1
2 log |Kuu|+

1
2 log |V|.

(A.123)

Therefore, FVFE is identical to the limit of the approximate marginal likelihood provided by
Power EP as shown in eq. (A.121).
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